The nucleotide-binding site of the Escherichia coli DnaC protein: molecular topography of DnaC protein-nucleotide cofactor complexes.

Cell Biochem Biophys

Department of Human Biological Chemistry, the Sealy Center for Structural Biology, Sealy Center for Cancer Cell Biology, The Univ of Texas Medical Branch at Galveston, Galveston, TX 77555-1053, USA.

Published: February 2006

The structure of the nucleotide-binding site of the Escherichia coli replication factor DnaC protein and the effect of the nucleotide cofactor on the protein structure have been examined using ultraviolet, steady-state, and time-dependent fluorescence spectroscopy. Emission spectra and quenching studies of the fluorescent nucleotide analogs, 3'-O-(N-methylantraniloyl)-5'-triphosphate (MANT-ATP) and 3'-O-(N-methylantraniloyl)-5'-diphosphate (MANT-ADP), bound to the DnaC protein indicate that the nucleotide-binding site forms a hydrophobic cleft on the surface of the protein. Fluorescence decays of free and bound MANT-ATP and MANT-ADP indicate that cofactors exist in two different conformations both, free and bound to the protein. However, the two conformations of the bound nucleotides differ in their solvent accessibilities. Moreover, there are significant differences in the solvent accessibility between ATP and ADP complexes. Specific binding of magnesium to the protein controls the structure of the binding site, particularly, in the case of the ATP complex, leading to additional opening of the binding site cleft. Both tyrosine and tryptophan residues are located on the surface of the protein. The tryptophans are clustered at a large distance from the nucleotide-binding site. However, in spite of a large spatial separation, binding of both cofactors induces significant and different changes in the structure of the environment of tryptophans, indicating long-range structural effects through the DnaC molecule. Moreover, only ATP induces changes in the distribution of the tyrosine residues on the surface of the protein. The data reveal that the nucleotide-DnaC protein complex is a sophisticated allosteric system, responding differently to the ATP and ADP binding.

Download full-text PDF

Source
http://dx.doi.org/10.1385/CBB:43:3:331DOI Listing

Publication Analysis

Top Keywords

nucleotide-binding site
16
dnac protein
12
surface protein
12
protein
10
site escherichia
8
escherichia coli
8
free bound
8
atp adp
8
binding site
8
induces changes
8

Similar Publications

, a globally significant oilseed crop, exhibits a wide distribution across diverse climatic zones. is being increasingly susceptible to distinct diseases, such as blackleg, clubroot and sclerotinia stem rot, leading to substantial reductions in yield. Nucleotide-binding site leucine-rich repeat genes (), the most pivotal family of resistance genes, can be effectively harnessed by identifying and uncovering their diversity to acquire premium disease-resistant gene resources.

View Article and Find Full Text PDF

The pathogenesis of gout.

J Rheum Dis

January 2025

Division of Rheumatology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea.

Gout is the most common inflammatory arthritis in adults, associated with hyperuricemia and the chronic deposition of monosodium urate (MSU) crystals. Hyperuricemia results from increased production of uric acid and decreased excretion by the kidneys and intestines. Urate excretion is regulated by a group of urate transporters, and decreased renal or intestinal excretion is the primary mechanism of hyperuricemia in most people.

View Article and Find Full Text PDF

Integrated NMR-crystallography-computational approach for molecular recognition studies of human Gαi3 protein by a small molecule inhibitor.

Int J Biol Macromol

December 2024

Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia 46010, Spain; Centro de Investigación Príncipe Felipe, Unidad Asociada a IBV, Valencia 46012, Spain. Electronic address:

The small molecule IGGi-11 targets Gαi subunits of heterotrimeric guanine nucleotide-binding proteins. Gα subunits are activated by G-protein-coupled receptors in response to extracellular stimuli by accelerating the exchange of GDP for GTP, but they are also activated by intracellular proteins like GIV, of which elevated levels correlate with increased cell migration and cancer metastasis. IGGi-11 disrupts the interaction of Gαi proteins with GIV and inhibits pro-invasive traits of metastatic breast cancer cells without interfering with GPCR signaling.

View Article and Find Full Text PDF

causes devastating rice blast disease, significantly impacting rice production in many countries. Among the many known resistance (R) genes, confers broad-spectrum resistance to isolates and encodes a nucleotide-binding site leucine-rich repeat receptor (NLR). Although Piz-t-interacting proteins and those in the signal transduction pathway have been identified over the last decade, the Piz-t-mediated resistance has not been fully understood at the transcriptomic and metabolomic levels.

View Article and Find Full Text PDF

miR158a negatively regulates plant resistance to Phytophthora parasitica by repressing AtTN7 that requires EDS1-PAD4-ADR1 complex in Arabidopsis thaliana.

Plant J

December 2024

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Small RNAs are involved in diverse cellular processes, including plant immunity to pathogens. Here, we report that miR158a negatively regulates plant immunity to the oomycete pathogen Phytophthora parasitica in Arabidopsis thaliana. By performing real-time quantitative PCR, transient expression, and RNA ligase-mediated 5' rapid amplification of cDNA ends assays, we demonstrate that miR158a downregulates AtTN7 expression by cleaving its 3'-untranslated region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!