Sulfide-tolerant marine invertebrates employ a variety of mechanisms to detoxify sulfide once it has entered their bodies, but their integumentary, respiratory epithelium and circulatory cells may still be exposed to toxic sulfide concentrations. To investigate whether sulfide exposure is toxic to mitochondria of a sulfide-tolerant invertebrate, we used the fluorescent dyes JC-1 and TMRM to determine the effect of sulfide exposure on mitochondrial depolarization in erythrocytes from the annelid Glycera dibranchiata. In erythrocytes exposed to 0.11-1.9 mmol l-1 sulfide for 1 h, the dyes showed fluorescence changes consistent with sulfide-induced mitochondrial depolarization. At the highest sulfide concentration, the extent of depolarization was equivalent to that caused by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). Even when induced by as little as 0.3 mmol l-1 sulfide, the depolarization was not reversible over a subsequent 5 h recovery period. The mechanism of toxicity was likely not via inhibition of cytochrome c oxidase (COX), since other COX inhibitors and other mitochondrial electron transport chain inhibitors did not produce similar effects. Furthermore, pharmacological inhibition of the mitochondrial permeability transition pore failed to prevent sulfide-induced depolarization. Finally, increased oxidation of the free radical indicators H2DCFDA and MitoSOX in erythrocytes exposed to sulfide suggests that sulfide oxidation increased oxidative stress and superoxide production, respectively. Together, these results indicate that sulfide exposure causes mitochondrial depolarization in cells of a sulfide-tolerant annelid, and that this effect, which differs from the actions of other COX inhibitors, may be via increased free radical damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.01867 | DOI Listing |
Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China. Electronic address:
This study presents the development and evaluation of triphenylphosphine-modified cyclometalated iridium complexes as selective anticancer agents targeting mitochondria. By leveraging the mitochondrial localization capability of the triphenylphosphine group, these complexes displayed promising cytotoxicity in the micromolar range (3.12-7.
View Article and Find Full Text PDFToxicology
January 2025
Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India, 110062. Electronic address:
Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different level in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level on surviving species model.
View Article and Find Full Text PDFmSphere
January 2025
Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
(PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response.
View Article and Find Full Text PDFBiotechnol Appl Biochem
January 2025
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India.
Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!