Here we demonstrate that fruit from tomato (Lycopersicon esculentum) plants expressing Arabidopsis (Arabidopsis thaliana) H(+)/cation exchangers (CAX) have more calcium (Ca2+) and prolonged shelf life when compared to controls. Previously, using the prototypical CAX1, it has been demonstrated that, in yeast (Saccharomyces cerevisiae) cells, CAX transporters are activated when the N-terminal autoinhibitory region is deleted, to give an N-terminally truncated CAX (sCAX), or altered through specific manipulations. To continue to understand the diversity of CAX function, we used yeast assays to characterize the putative transport properties of CAX4 and N-terminal variants of CAX4. CAX4 variants can suppress the Ca2+ hypersensitive yeast phenotypes and also appear to be more specific Ca2+ transporters than sCAX1. We then compared the phenotypes of sCAX1- and CAX4-expressing tomato lines. The sCAX1-expressing tomato lines demonstrate increased vacuolar H(+)/Ca2+ transport, when measured in root tissue, elevated fruit Ca2+ level, and prolonged shelf life but have severe alterations in plant development and morphology, including increased incidence of blossom-end rot. The CAX4-expressing plants demonstrate more modest increases in Ca2+ levels and shelf life but no deleterious effects on plant growth. These findings suggest that CAX expression may fortify plants with Ca2+ and may serve as an alternative to the application of CaCl2 used to extend the shelf life of numerous agriculturally important commodities. However, judicious regulation of CAX transport is required to assure optimal plant growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283758 | PMC |
http://dx.doi.org/10.1104/pp.105.066266 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning 530004, PR China. Electronic address:
Cinnamaldehyde (CIN) is gaining interest as a highly effective natural antimicrobial agent to extend the shelf life of fruits. However, its inherent instability limits further applications. In this work, a new strategy for the synthesis of HKUST-1 to encapsulate CINs by in situ growth method using copper-ammonia fiber as precursors is proposed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou 225001, PR China. Electronic address:
In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The demand for extended shelf life and food safety in the food industry continues to rise. At the same time, the environmental burden of traditional plastic packaging materials is becoming increasingly serious. Therefore, in this study, an intelligent bilayer film with a pH-sensitive inner indicator film based on Artemisia Sphaerocephala Krasch.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
Due to health reasons of polyglycerol polyricinoleate (PGPR), there has been a growing interest in reducing it. To address this, this study developed the PGPR/Protein (whey, pea, and chickpea protein isolates) emulsifier combinations. The effects of these combinations on the preparation, structure, physicochemical and in vitro digestive properties of W/O/W microcapsules were evaluated.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
College of Food Science and Engineering, Ningbo University, Ningbo, 315832, PR China.
Quinoa polysaccharides have attracted significant research interest in recent years due to their diverse biological activities, including antiviral, anti-inflammatory, antioxidant, and immunoregulatory properties. These attributes align with the growing global demand for natural, functional food ingredients, positioning quinoa polysaccharides as a valuable resource in food science and technology. This review presents an overview of the various bioactivities of quinoa polysaccharides, critically evaluates the methods used for their extraction and purification, describes their structural characteristics, and discusses their practical applications across multiple areas within the food industry, including food additives, meat products, health foods, and innovative food packaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!