Social interactions can generate rapid and dramatic changes in behaviour and neuroendocrine activity. We investigated the effects of a changing social environment on aggressive behaviour and brain aromatase activity (bAA) in a sex-changing fish, Lythrypnus dalli. Aromatase is responsible for the conversion of androgen into oestradiol. Male removal from a socially stable group resulted in rapid and dramatic (> or =200%) increases in aggression in the dominant female, which will become male usually 7-10 days later. These dominant females and recently sex-changed individuals had lower bAA but similar gonadal aromatase activity (gAA) compared to control females, while established males had lower bAA than all groups and lower gAA than all groups except dominant females. Within hours of male removal, dominant females' aggressive behaviour was inversely related to bAA but not gAA. These results are novel because they are the first to: (i) demonstrate socially induced decreases in bAA levels corresponding with increased aggression, (ii) identify this process as a possible neurochemical mechanism regulating the induction of behavioural, and subsequently gonadal, sex change and (iii) show differential regulation of bAA versus gAA resulting from social manipulations. Combined with other studies, this suggests that aromatase activity may modulate fast changes in vertebrate social behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559966 | PMC |
http://dx.doi.org/10.1098/rspb.2005.3210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!