Members of the Smad protein family function as signal transducers of the transforming growth factor (TGF-beta) superfamily proteins. The human Smad5 protein, a signal transducer downstream of TGF-beta/BMP receptors, is composed of N-terminal DNA binding domain (MH1) and C-terminal protein-protein interaction domain (MH2) connected together by a linker motif. We used homology-modeling techniques to generate a reliable molecular model of the Smad5 MH1 domain based on the crystal structure of Smad3 MH1 domain. Our study presents the structural features of a BMP-regulated, R-Smad subfamily member (consisting of Smad1, Smad5 and Smad8) for the first time. This model provides a structural basis for explaining both functional similarities and differences between Smad3 and Smad5. Also, the structural model of this molecular target would be useful for structure-based inhibitor design because of its high accuracy. The results of our study provide important insights into understanding the structure-function relationship of the members of the Smad protein family and can serve to guide future genetic and biochemical experiments in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2005.09.009 | DOI Listing |
Clin Sci (Lond)
January 2025
Center for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
J Orthop
March 2025
Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China.
Background: Impaired osteogenic differentiation ability of mesenchymal stem cells (MSCs) plays a pathogenic role in osteoporosis (OP). ALG5, a key glucosyltransferase, participates in the synthesis of the glucose-residue donor. However, little is known about the role of ALG5 in OP pathogenesis and osteogenic differentiation.
View Article and Find Full Text PDFMol Med
November 2024
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Proc Natl Acad Sci U S A
November 2024
Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030.
Activin receptor type 1 (ACVR1; ALK2) and activin receptor like type 1 (ACVRL1; ALK1) are transforming growth factor beta family receptors that integrate extracellular signals of bone morphogenic proteins (BMPs) and activins into Mothers Against Decapentaplegic homolog 1/5 (SMAD1/SMAD5) signaling complexes. Several activating mutations in ALK2 are implicated in fibrodysplasia ossificans progressiva (FOP), diffuse intrinsic pontine gliomas, and ependymomas. The ALK2 R206H mutation is also present in a subset of endometrial tumors, melanomas, non-small lung cancers, and colorectal cancers, and ALK2 expression is elevated in pancreatic cancer.
View Article and Find Full Text PDFPlacenta
December 2024
Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!