The impacts of the aeration and the agitation on the composting process of synthetic food wastes made of dog food were studied in a laboratory-scale reactor. Two major peaks of CO(2) evolution rate were observed. Each peak represented an independent stage of composting associated with the activities of thermophilic bacteria. CO(2) evolutions known to correlate well with microbial activities and reactor temperatures were fitted successfully to a modified Gompertz equation, which incorporated three biokinetic parameters, namely, CO(2) evolution potential, specific CO(2) evolution rate, and lag phase time. No parameters that describe the impact of operating variables are involved. The model is only valid for the specified experimental conditions and may look different with others. The effects of operating parameters such as aeration and agitation were studied statistically with multivariate regression technique. Contour plots were constructed using regression equations for the examination of the dependence of CO(2) evolution potentials on aeration and agitation. In the first stage, a maximum CO(2) evolution potential was found when the aeration rate and the agitation parameter were set at 1.75 l/kg solids-min and 0.35, respectively. In the second stage, a maximum existed when the aeration rate and the agitation parameter were set at 1.8 l/kg solids-min and 0.5, respectively. The methods presented here can also be applied for the optimization of large-scale composting facilities that are operated differently and take longer time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2005.01.018DOI Listing

Publication Analysis

Top Keywords

co2 evolution
20
aeration agitation
12
synthetic food
8
food wastes
8
wastes dog
8
dog food
8
evolution rate
8
evolution potential
8
stage maximum
8
aeration rate
8

Similar Publications

Expanding the spectral response of photocatalysts to facilitate overall water splitting (OWS) represents an effective approach for improving solar spectrum utilization efficiency. However, the majority of single-phase photocatalysts designed for OWS primarily respond to the ultraviolet region, which accounts for a small proportion of sunlight. Herein, we present a versatile strategy to achieve broad visible-light-responsive OWS photocatalysis dominated by direct ligand-to-cluster charge transfer (LCCT) within metal-organic frameworks (MOFs).

View Article and Find Full Text PDF

Tailoring the oxidation of benzyl alcohol and its derivatives with (photo)electrocatalysis.

Chem Commun (Camb)

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.

The electrochemical oxidation of alcohol molecules has gained significance as a key anode reaction, offering an alternative to the oxygen evolution reaction (OER) for hydrogen (H) production and carbon dioxide (CO) reduction. The (photo)electrochemical oxidation of benzyl alcohol and its derivatives serves as an important model system, not only because benzyl alcohol oxidation is a critical industrial process, but also because it offers valuable insights into electrocatalytic biomass conversion. Tailoring this reaction through electrochemical and photoelectrochemical methods using heterogeneous noble and transition metal electrocatalysts presents a green approach and the potential for uncovering new reaction mechanisms.

View Article and Find Full Text PDF

Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface.

View Article and Find Full Text PDF

A living library concept to capture the dynamics and reactivity of mixed-metal clusters for catalysis.

Nat Chem

January 2025

TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany.

The exploration of ligated metal clusters' chemical space is challenging, partly owing to an insufficiently targeted access to reactive clusters. Now, dynamic mixtures of clusters, defined as living libraries, are obtained through organometallic precursor chemistry. The libraries are populated with interrelated clusters, including transient and highly reactive ones, as well as more accessible but less reactive species.

View Article and Find Full Text PDF

Switching CO2 Electroreduction toward C2+ Products and CH4 by Regulate the Protonation and Dimerization in Platinum/Copper Catalysts.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.

Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!