Recent studies have addressed the changes in endocannabinoid ligands and receptors that occur in multiple sclerosis, as a way to explain the efficacy of cannabinoid compounds to alleviate spasticity, pain, tremor, and other signs of this autoimmune disease. Using Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, we recently found a decrease in cannabinoid CB1 receptors mainly circumscribed to the basal ganglia, which could be related to the motor disturbances characteristic of these rats. In the present study, using the same model, we explored the potential changes in several neurotransmitters in the basal ganglia that might be associated with the motor disturbances described in these rats, but we only found a small increase in glutamate contents in the globus pallidus. We also examined whether the motor disturbances and the changes of CB1 receptors found in the basal ganglia of EAE rats disappear after the treatment with rolipram, an inhibitor of type IV phosphodiesterase able to supress EAE in different species. Rolipram attenuated clinical decline, reduced motor inhibition, and normalized CB1 receptor gene expression in the basal ganglia. As a third objective, we examined whether EAE rats also exhibited changes in endocannabinoid levels as shown for CB1 receptors. Anandamide and 2-arachidonoylglycerol levels decreased in motor related regions (striatum, midbrain) but also in other brain regions, although the pattern of changes for each endocannabinoid was different. Finally, we hypothesized that the elevation of the endocannabinoid activity, following inhibition of endocannabinoid uptake, might be beneficial in EAE rats. AM404, arvanil, and OMDM2 were effective to reduce the magnitude of the neurological impairment in EAE rats, whereas VDM11 did not produce any effect. The beneficial effects of AM404 were reversed by blocking TRPV1 receptors with capsazepine, but not by blocking CB1 receptors with SR141716, thus indicating the involvement of endovanilloid mechanisms in these effects. However, a role for CB1 receptors is supported by additional data showing that CP55,940 delayed EAE progression. In summary, our data suggest that reduction of endocannabinoid signaling is associated with the development of EAE in rats. We have also proved that the reduction of CB1 receptors observed in these rats is corrected following treatment with a compound used in EAE such as rolipram. In addition, the direct or indirect activation of vanilloid or cannabinoid receptors may reduce the neurological impairment experienced by EAE rats, although the efficacy of the different compounds examined seems to be determined by their particular pharmacodynamic and pharmacokinetic characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2005.03.002DOI Listing

Publication Analysis

Top Keywords

cb1 receptors
24
eae rats
24
basal ganglia
16
multiple sclerosis
12
changes endocannabinoid
12
motor disturbances
12
receptors
10
rats
10
eae
10
endocannabinoid levels
8

Similar Publications

Neuropathy is the most common complication of diabetes, leading to painful symptoms like hyperalgesia. Current treatments for diabetic painful neuropathy often prove inadequate, necessitating the exploration of new pharmacological approaches. Therefore, this study aimed to investigate the potential antinociceptive effect of aspirin-triggered lipoxin A4 (ATL), a specialized pro-resolving lipid mediator, when administered alone or in combination with cannabinoid agonists, to alleviate diabetic neuropathic pain.

View Article and Find Full Text PDF

Cannabinoid type-1 receptors in CaMKII neurons drive impulsivity in pathological eating behavior.

Mol Metab

January 2025

Leibniz Institute for Resilience Research, 55122 Mainz Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz Germany. Electronic address:

Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. This innate mechanism becomes detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. The endocannabinoid system favors energy accumulation and regulates reward circuits.

View Article and Find Full Text PDF

Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB and its primary transducer, G.

View Article and Find Full Text PDF

In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.

View Article and Find Full Text PDF

: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!