Three amperometric enzyme electrodes have been constructed by adsorbing anionic royal palm tree peroxidase (RPTP), anionic sweet potato peroxidase (SPP), or cationic horseradish peroxidase (HRP-C) on spectroscopic graphite electrodes. The resulting H(2)O(2)-sensitive biosensors were characterized both in a flow injection system and in batch mode to evaluate their main bioelectrochemical parameters, such as pH dependency, I(max), K(M)(app), detection limit, linear range, operational and storage stability. The obtained results showed a distinctly different behavior for the plant peroxidase electrodes, demonstrating uniquely superior characteristics of the RPTP-based sensors. The broader linear range observed for the RPTP-based biosensor is explained by a high stability of this enzyme in presence of H(2)O(2). The higher storage and operational stability of RPTP-based biosensor as well as its capability to measure hydrogen peroxide under acidic conditions connect with an extremely high thermal and pH-stability of RPTP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2005.01.008DOI Listing

Publication Analysis

Top Keywords

palm tree
8
hydrogen peroxide
8
linear range
8
rptp-based biosensor
8
tree peroxidase-based
4
peroxidase-based biosensor
4
biosensor unique
4
unique characteristics
4
characteristics hydrogen
4
peroxide monitoring
4

Similar Publications

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

Palm trees () are among the most popular ornamental plants worldwide. Despite extensive research on the fungi associated with , the diversity and ecological dynamics of fungi affecting ornamental palms remain poorly studied, although they have significant impact on palm health and economic value. Furthermore, while research on palm fungal diversity has traditionally focused on tropical assemblages, ornamental palms in temperate climates offer a unique opportunity to explore the diversity of palm fungi in non-native habitats.

View Article and Find Full Text PDF

The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials.

View Article and Find Full Text PDF

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

Tropical peatlands are significant sources of methane (CH₄), but their contribution to the global CH₄ budget remains poorly quantified due to the lack of long-term, continuous and high-frequency flux measurements. To address this gap, we measured net ecosystem CH exchange (NEE-CH) using eddy covariance technique throughout the conversion of a tropical peat swamp forest to an oil palm plantation. This encompassed the periods before, during and after conversion periods from 2014 to 2020, during which substantial environmental shifts were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!