We discuss the gravitational sedimentation of particles in terms of a stochastic model considering, in view of experimental evidence, that the aggregation to the growing surface (deposit) is mediated by the formation of a layer of suspended particles subject to gravitational forces, thermal agitation, as well as aggregation (contact) forces. The aggregation of such partially buoyant particles is ruled by the rates of occurrence of the different stochastic events: incorporation to the layer of suspended particles, sedimentation, and gravitationally biased diffusion. The model introduces bridges across different standard solid on solid deposition models which can be considered as limit cases of the present one. Analytical and numerical results show that for finite (realistic) deposits there are different regimes of aggregation including situations in which the deposit is grown completely during the transient time of the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.67.061605 | DOI Listing |
Int J Mol Sci
November 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., 30-239 Krakow, Poland.
Oleogels are structured materials formed by immobilizing oil within a polymer network. This study aimed to synthesize bilayer foamed oleogels using Ecogel™ as an emulsifier-a natural gelling and emulsifying agent commonly used to stabilize emulsions. Ecogel™ is multifunctional, particularly in cosmetic formulations, where it aids in creating lightweight cream gels with a cooling effect.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
University of Chinese Academy of Sciences, Beijing 100190, China.
Multielemental transition metal compounds represent a class of promising candidates for the biomedical field due to their unique structure and biomedical application potential. However, their synthesis process remains challenging, which was subject to the high-temperature treatment of the multimetallic elements integrated within one system. Herein, for the first time, we have fabricated the nanotripod, , (FeCoNiCuZnAl)O (denoted as HEO) agent, via the structural topotactic transformation of layered double hydroxide (LDH) precursors with the tunable disorder degree, for highly efficient high-entropydynamic therapy associated with metabolism homeostasis.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
The synthesis of large, freestanding, single-atom-thick two-dimensional (2D) metallic materials remains challenging due to the isotropic nature of metallic bonding. Here, we present a bottom-up approach for fabricating macroscopically large, nearly freestanding 2D gold (Au) monolayers, consisting of nanostructured patches. By forming Au monolayers on an Ir(111) substrate and embedding boron (B) atoms at the Au/Ir interface, we achieve suspended monoatomic Au sheets with hexagonal structures and triangular nanoscale patterns.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China. Electronic address:
Cureus
November 2024
Department of General Surgery, Jordan University Hospital, Amman, JOR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!