Numerical simulations are conducted to calculate velocity fluctuations in a simple two-dimensional model of foam under steady shear. The width of the velocity distribution increases sublinearly with the shear rate, indicating that velocity fluctuations are large compared to the average flow at low shear rates (stick-slip flow) and small compared to the average flow at large shear rates. Several quantities reveal a crossover in behavior at a characteristic strain rate gamma(x), given by the yield strain divided by the duration of a bubble rearrangement event. For strain rates above gamma(x), the velocity correlations decay exponentially in space and time, and the velocity distribution is a Gaussian. For strain rates below gamma(x), the velocity correlations decay as stretched exponentials in space and time, and the velocity distribution is broader than a Gaussian.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.67.061503 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Korea.
In the present study, we experimentally investigate the liquid flow induced in a rotating drum (cylindrical tank with a short aspect ratio) aligned horizontally, focusing on the variation in the time-averaged and fluctuating flow structures with different fill ratios. For each fill ratio, controlled by varying the water height, we measure the velocity fields at different cross-sectional planes with particle image velocimetry while varying the rotational speed of the drum. Compared to the condition of a fill ratio of 1.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Fluid Dynamics Laboratory, School of Mechanical Engineering, VIT, Vellore, 632014, India.
Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
National Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China. Electronic address:
This study investigates the monthly and interannual variations in chlorophyll-a (Chl-a) concentrations in the Oman and Somalia upwelling zones using satellite data from 2003 to 2020. Bivariate Wavelet Coherence (BWC) and Multiple Wavelet Coherence (MWC) analyses were applied to identify the key factors influencing Chl-a concentration changes. The results show that Ekman pumping and Ekman transport induced by the southwest monsoon are crucial for phytoplankton blooms along the coast and offshore in both upwelling zones.
View Article and Find Full Text PDFJ Chem Phys
January 2025
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Distinguished by its exceptional sensitivity and specificity, Polymerase Chain Reaction (PCR) is a pivotal technology for pathogen detection. However, traditional PCR instruments that employ thermoelectric cooling (TEC) are often constrained by cost, efficiency, and performance variability resulting from the fluctuations in ambient temperature. Here, we present a thermal cycler that utilizes electromagnetic induction heating at 50 kHz and anti-freezing water cooling with a velocity of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!