Kinetic pathway of the bilayered-micelle to perforated-lamellae transition.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Materials Science and Engineering, Michigan Technological University, Michigan 49931, USA.

Published: June 2003

Using time-resolved small-angle neutron scattering, we have studied the kinetics of the recently observed bilayered-micelle (or so-called "bicelle") to perforated-lamellar transition in phospholipid mixtures. The data suggest that phase-ordering occurs via the early-time coalescence of bicelles into stacks of lamellae that then swell. Our measurements on this biomimetic system highlight the ubiquitous role of transient metastable states in the phase ordering of complex fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.67.060902DOI Listing

Publication Analysis

Top Keywords

kinetic pathway
4
pathway bilayered-micelle
4
bilayered-micelle perforated-lamellae
4
perforated-lamellae transition
4
transition time-resolved
4
time-resolved small-angle
4
small-angle neutron
4
neutron scattering
4
scattering studied
4
studied kinetics
4

Similar Publications

Gas-phase and water-mediated mechanisms for the OCS + OH reaction.

Phys Chem Chem Phys

January 2025

Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.

We report a computational study of the gas-phase and water-mediated mechanisms for the oxidation of carbonyl sulfide (OCS) by the hydroxyl radical. To achieve reliable results, we employ a dual-level strategy within interpolated single-point energies (VTST-ISPE) at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory. In the gas-phase mechanism, we have determined the rate constants by kinetic Monte Carlo simulation in the interval of temperatures of 250-550 K.

View Article and Find Full Text PDF

Synthetic phenolic antioxidant contamination in farmland soils induced by mulching films: Distribution and transformation pathways.

J Hazard Mater

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

The occurrence and distribution of synthetic phenolic antioxidants (SPAs) originating from mulch film in farmland soils, along with their transformation characteristics and pathways, remain largely unknown. This study is the first to investigate nineteen SPAs and four transformation products (TPs) in farmland soils across China. In film-mulching soils, concentrations of SPAs (median, range: 83.

View Article and Find Full Text PDF

A new in situ fracturing-enhanced oxidative remediation for various low-permeability phenanthrene-contaminated soils: Oxidation effectiveness and kinetics of potassium permanganate.

J Hazard Mater

January 2025

Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Shanghai 200092, China.

A new in situ fracturing-enhanced oxidative remediation approach was recommended in this study to achieve rapid and efficient remediation of low-permeability contaminated sites. The objective of this study was to evaluate the effects of permeability and potassium permanganate (KMnO) concentration on the oxidation effectiveness and kinetics of KMnO in phenanthrene (PHE)-contaminated soil through rigid-wall hydraulic conductivity tests and a series of laboratory experiments. The results indicate that for various low-permeability contaminated soils, there was a critical KMnO concentration to significantly reduce the remediation time and a critical Darcy velocity to meet remediation goals.

View Article and Find Full Text PDF

Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).

View Article and Find Full Text PDF

Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly.

ACS Appl Mater Interfaces

January 2025

Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.

The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!