High calorie and fat consumption and the production of free radicals are two major mechanistic pathways between diet and disease. In this study we evaluated the effect of a plant-based diet poor in animal fat and rich in (n-3) fatty acids on fatty acids of serum phospholipids and on the production of reactive oxygen metabolites (ROMs). One hundred and four healthy female postmenopausal volunteers were recruited and randomized to a dietary intervention or a control group. Dietary intervention included a program of food education and biweekly common meals for 18 weeks. When the intervention and control groups were compared, it was seen that dietary intervention resulted in a significant reduction of saturated fatty acids (-1.5%) and a significant increase in (n-3) fatty acids (+20.6%), in particular docosahexaenoic acid (+24.8%). We observed that arachidonic acid decreased (-7.7%), while (n-6) fatty acids did not, and the (n-3)/(n-6) polyunsaturated ratio increased significantly (+24.1%). As expected, ROMs decreased significantly in the intervention group (-6%). The results indicated that a plant-based diet can improve the serum fatty acid profile and decrease ROMs production. These results suggest that a plant-based diet may reduce the body's exposure to oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/172460080502000304 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal.
Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil.
During the harvest of Ilex paraguariensis, approximately 2-5 tons per hectare of thick stems are left on the soil surface. The outer portion of these stems, referred to as the coproduct, constitutes 30% of the total residue mass. Although this coproduct has been partially characterized in terms of its phytochemical profile, its technological applications remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!