Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel strain of bacteria (LPM-4) was isolated that is characterized by a unique EDTA requirement for cell growth. Suspensions of washed cells of strain LPM-4 degrated EDTA complexes with Ba2+, Mg 2+, Ca2+, and Mn2+ at constant rates (0.310-0.486 mmol EDTA/(g h)) and Zn-EDTA at an initial rate of 0.137 +/- 0.016 mmol EDTA/(g h). The temperature optima for cell growth and EDTA degradation were determined under pH-auxostat cultivation. As compared with the known EDTA-degrating bacteria, strain LPM-4 exhibited a higher specific growth rate (0.095 h(-1)) and lower mass cell yield (0.219 g cells/g EDTA) that is promising for its practical applications for EDTA removal in wastewater treatment plants.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!