The review sums up the results of studies of (1) physiological growth characteristics of the yeast Yarrowia lipolytica, cultured in the presence of diverse carbon sources (n-alkanes, glucose, and glycerol), and (2) superhigh synthesis of organic acids, which were performed at the Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences. Microbiological processes of obtaining alpha-ketoglutaric, pyruvic, isocitric, and citric acids are discussed.
Download full-text PDF |
Source |
---|
Microb Cell Fact
January 2025
Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles (Madrid), Spain.
Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA).
View Article and Find Full Text PDFFoods
January 2025
Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland.
Bioresour Bioprocess
January 2025
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763 Republic of Korea. Electronic address:
Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method.
View Article and Find Full Text PDFBiotechnol J
January 2025
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!