A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session94f4kahig0ppbqbvo53q6svjf32eahbs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Haplotype interaction analysis of unlinked regions. | LitMetric

Haplotype interaction analysis of unlinked regions.

Genet Epidemiol

Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany.

Published: December 2005

Genetically complex diseases are caused by interacting environmental factors and genes. As a consequence, statistical methods that consider multiple unlinked genomic regions simultaneously are desirable. Such consideration, however, may lead to a vast number of different high-dimensional tests whose appropriate analysis pose a problem. Here, we present a method to analyze case-control studies with multiple SNP data without phase information that considers gene-gene interaction effects while correcting appropriately for multiple testing. In particular, we allow for interactions of haplotypes that belong to different unlinked regions, as haplotype analysis often proves to be more powerful than single marker analysis. In addition, we consider different marker combinations at each unlinked region. The multiple testing issue is settled via the minP approach; the P value of the "best" marker/region configuration is corrected via Monte-Carlo simulations. Thus, we do not explicitly test for a specific pre-defined interaction model, but test for the global hypothesis that none of the considered haplotype interactions shows association with the disease. We carry out a simulation study for case-control data that confirms the validity of our approach. When simulating two-locus disease models, our test proves to be more powerful than association methods that analyze each linked region separately. In addition, when one of the tested regions is not involved in the etiology of the disease, only a small amount of power is lost with interaction analysis as compared to analysis without interaction. We successfully applied our method to a real case-control data set with markers from two genes controlling a common pathway. While classical analysis failed to reach significance, we obtained a significant result even after correction for multiple testing with our proposed haplotype interaction analysis. The method described here has been implemented in FAMHAP.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.20096DOI Listing

Publication Analysis

Top Keywords

interaction analysis
12
multiple testing
12
haplotype interaction
8
analysis
8
unlinked regions
8
proves powerful
8
case-control data
8
multiple
5
interaction
5
haplotype
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!