Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session94f4kahig0ppbqbvo53q6svjf32eahbs): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetically complex diseases are caused by interacting environmental factors and genes. As a consequence, statistical methods that consider multiple unlinked genomic regions simultaneously are desirable. Such consideration, however, may lead to a vast number of different high-dimensional tests whose appropriate analysis pose a problem. Here, we present a method to analyze case-control studies with multiple SNP data without phase information that considers gene-gene interaction effects while correcting appropriately for multiple testing. In particular, we allow for interactions of haplotypes that belong to different unlinked regions, as haplotype analysis often proves to be more powerful than single marker analysis. In addition, we consider different marker combinations at each unlinked region. The multiple testing issue is settled via the minP approach; the P value of the "best" marker/region configuration is corrected via Monte-Carlo simulations. Thus, we do not explicitly test for a specific pre-defined interaction model, but test for the global hypothesis that none of the considered haplotype interactions shows association with the disease. We carry out a simulation study for case-control data that confirms the validity of our approach. When simulating two-locus disease models, our test proves to be more powerful than association methods that analyze each linked region separately. In addition, when one of the tested regions is not involved in the etiology of the disease, only a small amount of power is lost with interaction analysis as compared to analysis without interaction. We successfully applied our method to a real case-control data set with markers from two genes controlling a common pathway. While classical analysis failed to reach significance, we obtained a significant result even after correction for multiple testing with our proposed haplotype interaction analysis. The method described here has been implemented in FAMHAP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/gepi.20096 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!