Recombinant microbial systems for the production of human collagen and gelatin.

Appl Microbiol Biotechnol

FibroGen, Inc., 225 Gateway Boulevard, South San Francisco, CA 94080, USA.

Published: December 2005

The use of genetically engineered microorganisms is a cost-effective, scalable technology for the production of recombinant human collagen (rhC) and recombinant gelatin (rG). This review will discuss the use of yeast (Pichia pastoris, Saccharomyces cerevisiae, Hansenula polymorpha) and of bacteria (Escherichia coli, Bacillus brevis) genetically engineered for the production of rhC and rG. P. pastoris is the preferred production system for rhC and rG. Recombinant strains of P. pastoris accumulate properly hydroxylated triple helical rhC intracellularly at levels up to 1.5 g/l. Coexpression of recombinant collagen with recombinant prolyl hydroxylase results in the synthesis of hydroxylated collagen with thermal stability similar to native collagens. The purified hydroxylated rhC forms fibrils that are structurally similar to fibrils assembled from native collagen. These qualities make rhC attractive for use in many medical applications. P. pastoris can also be engineered to secrete high levels (3 to 14 g/l ) of collagen fragments with defined length, composition, and physiochemical properties that serve as substitutes for animal-derived gelatins. The replacement of animal-derived collagen and gelatin with rhC and rG will result in products with improved safety, traceability, reproducibility, and quality. In addition, the rhC and rG can be engineered to improve the performance of products containing these biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-005-0180-xDOI Listing

Publication Analysis

Top Keywords

human collagen
8
collagen gelatin
8
genetically engineered
8
rhc
8
rhc recombinant
8
levels g/l
8
collagen
7
recombinant
6
recombinant microbial
4
microbial systems
4

Similar Publications

TAGLN-RhoA/ROCK2-SLC2A3-mediated Mechano-metabolic Axis Promotes Skin Fibrosis.

Int J Biol Sci

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.

Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms.

View Article and Find Full Text PDF

The present study aimed to investigate the role of a recombinant protein based on human collagen type I (RCPhC1) as a scaffold in maintaining the human tumor microenvironment within a patient-derived tumor xenograft (PDTX) model. RCPhC1, synthesized under animal component-free conditions, was explored for its potential to support the human-specific stroma associated with tumor growth. PDTX models were established using resected colorectal cancer liver metastasis specimens, and stromal cell populations from humans and mice were compared using three scaffolds: No scaffold (control), Matrigel and recombinant human collagen type I, across two passages.

View Article and Find Full Text PDF

Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches.

View Article and Find Full Text PDF

Background: Endothelial cells are integral components of the tumor microenvironment and play a multifaceted role in tumor immunotherapy. Targeting endothelial cells and related signaling pathways can improve the effectiveness of immunotherapy by normalizing tumor blood vessels and promoting immune cell infiltration. However, to date, there have been no comprehensive studies analyzing the role of endothelial cells in the diagnosis and treatment of prostate adenocarcinoma (PRAD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!