The erythrocyte membrane skeleton deforms constantly in circulation, but the mechanics of a junctional complex (JC) in the network is poorly understood. We previously proposed a 3-D mechanical model for a JC (Sung, L. A., and C. Vera. Protofilament and hexagon: A three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton. Ann Biomed Eng 31:1314-1326, 2003) and now developed a mathematical model to compute its equilibrium by dynamic relaxation. We simulated deformations of a single unit in the network to predict the tension of 6 alphabeta spectrin (Sp) (top, middle, and bottom pairs), and the attitude of the actin protofilament [pitch (theta), yaw (phi) and roll (psi) angles]. In equibiaxial deformation, 6 Sp would not begin their first round of "single domain unfolding in cluster" until the extension ratio (lambda) reach approximately 3.6, beyond the maximal sustainable lambda of approximately 2.67. Before Sp unfolds, the protofilament would gradually raise its pointed end away from the membrane, while phi and psi remain almost unchanged. In anisotropic deformation, protofilaments would remain tangent but swing and roll drastically at least once between lambda(i) = 1.0 and approximately 2.8, in a deformation angle- and lambda(i)-dependent fashion. This newly predicted nanomechanics in response to deformations may reveal functional roles previous unseen for a JC, and molecules associated with it, during erythrocyte circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-005-4698-y | DOI Listing |
J Cardiothorac Surg
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Carinal resection and reconstruction are complex surgical procedures often necessitated by tumors or other pathologies involving the tracheobronchial junction. Traditional approaches to these surgeries are highly invasive. The advent of uniportal video-assisted thoracoscopic surgery (VATS) along with the integration of extracorporeal membrane oxygenation (ECMO) offer potential advantages in reducing surgical trauma and improving outcomes.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Buenos Aires, Buenos Aires, Argentina.
Background: Alzheimer's disease is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and in the walls of brain vessels. The hippocampus - a complex brain structure that plays a key role in learning and memory - has been implicated in the disease. However, there is limited data on vascular changes during the pathological degeneration of Alzheimer's disease in this vulnerable structure, which has distinctive vascular features.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: Neurofibrillary tangles formed by hyperphosphorylated tau aggregates in the brain are one of the classical hallmarks of Alzheimer's Disease (AD). Tau aggregates have been shown to elicit cytotoxicity, leading to overall neuronal loss and cognitive decline in AD. These aggregates can be transmitted from neurons and glial cells to other brain cells through a process known as tau spreading, and ultimately reach the endothelial cells (ECs) lining the vessel walls, thus, causing dysfunction of the neurovascular unit (NVU), a complex multicellular system surrounding brain vessels.
View Article and Find Full Text PDFClin Chem
January 2025
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.
Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!