LBGK method coupled to time splitting technique for solving reaction-diffusion processes in complex systems.

Phys Chem Chem Phys

CABE, Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, Switzerland.

Published: September 2005

A new approach to numerically solve a reaction-diffusion system is given, specifically developed for complex systems including many reacting/diffusing species with broad ranges of rate constants and diffusion coefficients, as well as complicated geometry of reacting interfaces. The approach combines a Lattice Boltzmann (LB) method with a splitting time technique. In the present work, the proposed approach is tested by focusing on the typical reaction process between a metal ion M and a ligand L, to form a complex ML with M being consumed at an electrode. The aim of the paper is to systematically study the convergence conditions of the associated numerical scheme. We find that the combination of LB with the time splitting method allows us to solve the problem for any value of association and dissociation rate constant of the reaction process. Also, the method can be extended to a mixture of ligands. We stress two main points: (1) the LB approach is particularly convenient for the flux computation of M and (2) the splitting time procedure is very well suited for reaction processes involving association-dissociation rate constants varying on many orders of magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b505890bDOI Listing

Publication Analysis

Top Keywords

time splitting
8
complex systems
8
rate constants
8
splitting time
8
reaction process
8
lbgk method
4
method coupled
4
time
4
coupled time
4
splitting
4

Similar Publications

Galápagos iguanas are a monophyletic group endemic to the Galápagos archipelago, comprising the marine iguana Amblyrhynchus cristatus and three species of land iguanas: Conolophus subcristatus, C. pallidus and C. marthae.

View Article and Find Full Text PDF

Topological Moiré Polaritons.

Phys Rev Lett

December 2024

Clermont INP, Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, F-63000 Clermont-Ferrand, France.

The combination of an in-plane honeycomb potential and of a photonic spin-orbit coupling (SOC) emulates a photonic or polaritonic analog of bilayer graphene. We show that modulating the SOC magnitude allows us to change the overall lattice periodicity, emulating any type of moiré-arranged bilayer graphene with unique all-optical access to the moiré band topology. We show that breaking the time-reversal symmetry by an effective exciton-polariton Zeeman splitting opens a large topological gap in the array of moiré flat bands.

View Article and Find Full Text PDF

Drought is one of the most detrimental natural calamities to the economy. Despite its significant consequences, the evolution from meteorological to agricultural and hydrological droughts still needs to be explored. A thorough investigation was carried out in India's eastern hills and plateau region to determine the extent of drought's impact through indices.

View Article and Find Full Text PDF

Linear IgA bullous dermatosis (LABD) is a rare subepidermal blistering disorder characterized by the presence of linear IgA deposits at the basement membrane zone (BMZ) by direct immunofluorescence (DIF). This entity was first described by Chorzelski and Jablonska from Warsaw Center of Bullous Diseases, Poland. The disease affects children and adults, whereby they differ in terms of clinical picture and course.

View Article and Find Full Text PDF

The ever-increasing energy/power of modern laser sources is inevitably leading to new challenges and opportunities. One of them is the problem of spectral broadening of high-energy femtosecond pulses and their subsequent compression in time in, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!