Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology.

Phys Chem Chem Phys

Davy Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London, UK W1S 4BS.

Published: September 2005

Dislocations influence many properties of crystalline solids, including plastic deformation, growth and dissolution, diffusion and the formation of polytypes. Some of these processes can be described using continuum methods but this approach fails when a description of the structure of the core is required. To progress in these types of problems, an atomic scale model is essential. So far, atomic scale modelling of the cores of dislocations has been limited to systems with rather simple crystal structures. In this article, we describe modifications to current methodology, which have been used for strongly ionic materials with simple structures. These modifications permit the study of dislocation cores in more structurally complex materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b505612hDOI Listing

Publication Analysis

Top Keywords

atomic scale
12
scale modelling
8
modelling cores
8
cores dislocations
8
complex materials
8
dislocations complex
4
materials methodology
4
methodology dislocations
4
dislocations influence
4
influence properties
4

Similar Publications

Two-dimensional (2D) black arsenic phosphorus (b-AsP) material has been attracting considerable attention for its extraordinary properties. However, its application in large-scale device fabrication remains challenging due to the limited scale and irregular shape. Here, we found the special effect of Te upon growth of b-AsP and developed a novel Te-regulated steady growth (Te-SG) strategy to obtain high-quality b-AsP single crystal.

View Article and Find Full Text PDF

Rare Earth Selectivity and Electric Potentials at Mica Interfaces.

ACS Appl Mater Interfaces

January 2025

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Controlling materials' composition and structure to selectively adsorb rare earth elements (REE) is critical for better separations. Understanding how local electric potentials affect REE adsorption and how they can be modified via chemical substitution is of fundamental importance. We present calculated mean inner potentials for muscovite and phlogopite micas in excellent agreement with measured values of +10.

View Article and Find Full Text PDF

Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.

View Article and Find Full Text PDF

Engineering Atom-Scale Cascade Catalysis via Multi-Active Site Collaboration for Ampere-Level CO Electroreduction to C Products.

Adv Mater

January 2025

International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.

Electrochemical reduction of CO to value-added multicarbon (C) productions offers an attractive route for renewable energy storage and CO utilization, but it remains challenging to achieve high C selectivity at industrial-level current density. Herein, a MoCu single-atom alloy (SAA) catalyst is reported that displays a remarkable C Faradaic efficiency of 86.4% under 0.

View Article and Find Full Text PDF

Phase change materials such as Ge2Sb2Te5 (GST) are ideal candidates for next-generation, non-volatile, solid-state memory due to the ability to retain binary data in the amorphous and crystal phases and rapidly transition between these phases to write/erase information. Thus, there is wide interest in using molecular modeling to study GST. Recently, a Gaussian Approximation Potential (GAP) was trained for GST to reproduce Density Functional Theory (DFT) energies and forces at a fraction of the computational cost [Zhou et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!