Tibial forces were measured in vivo during the first year after total knee arthroplasty in a 66 kg, 80-year-old man. Forces were measured during activities of daily living, rehabilitation, and exercise. Peak tibial forces recorded during walking increased up to 12 months postoperatively (2.8 times body weight). Tibial forces correlated with increasing speed during treadmill walking. Rising from a chair generated peak forces of 2.6 times body weight. Stair descent generated higher peak forces than stair ascent (3.3 versus 2.9 times body weight, respectively). Exercising on a stair-climbing machine generated forces close to two times body weight whereas stationary bicycling generated even lower forces, near one times body weight. In general, the tibial forces recorded during walking and stair climbing were lower than most predicted values. These measurements can be used to validate in vitro and mathematical models of the knee. This should lead to refined surgical techniques and to enhanced prosthetic designs that will improve patient function, patient quality of life, and longevity of total knee arthroplasty implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.blo.0000186559.62942.8c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!