Ice-sheet and sea-level changes.

Science

Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, Deike Building, University Park, PA 16802, USA.

Published: October 2005

Future sea-level rise is an important issue related to the continuing buildup of atmospheric greenhouse gas concentrations. The Greenland and Antarctic ice sheets, with the potential to raise sea level approximately 70 meters if completely melted, dominate uncertainties in projected sea-level change. Freshwater fluxes from these ice sheets also may affect oceanic circulation, contributing to climate change. Observational and modeling advances have reduced many uncertainties related to ice-sheet behavior, but recently detected, rapid ice-marginal changes contributing to sea-level rise may indicate greater ice-sheet sensitivity to warming than previously considered.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1114613DOI Listing

Publication Analysis

Top Keywords

sea-level rise
8
ice sheets
8
ice-sheet sea-level
4
sea-level changes
4
changes future
4
future sea-level
4
rise issue
4
issue continuing
4
continuing buildup
4
buildup atmospheric
4

Similar Publications

Subterranean estuaries (STEs) are critical ecosystems at the interface of meteoric groundwater and subsurface seawater that are threatened by sea level rise. To characterize the influence of tides and waves on the STE microbial community, we collected porewater samples from a high-energy beach STE at Stinson Beach, California, USA, over the two-week neap-spring tidal transition during both a wet and dry season. The microbial community, analyzed by 16S rRNA gene (V4) amplicon sequencing, clustered according to consistent physicochemical features found within STEs.

View Article and Find Full Text PDF

Tidal marshes are coastal systems that provide valuable ecosystem services, highlighting coastal protection and carbon burial. For centuries, these dynamic ecosystems have kept pace with sea level rise through organic and mineral matter accumulation. In the current situation of accelerated sea-level rise and changes in suspended sediment concentrations, the evolution of these systems has gained special attention across scientific fields.

View Article and Find Full Text PDF

Innovative absolute probability approach for coastal vulnerability assessment due to sea level rise: Application in Tagus Estuary, Portugal.

Sci Total Environ

December 2024

Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. Electronic address:

In coastal urban areas highly susceptible to flooding, whether from sea level rise (SLR) or storms, it is crucial to assess the vulnerability and risks posed by extreme and frequent floods. Reliable estimates of extreme natural events' return periods rely on historical data or probabilistic models, requiring extensive and robust data. From climate-scenario-based or semi-empirical models, SLR projections are represented by a central estimate or the full domain cumulative density function (CDF), entailing uncertainties.

View Article and Find Full Text PDF

Soil organic matter (SOM) plays a major role in mitigating greenhouse gas emission and regulating earth's climate, carbon cycle, and biodiversity. Wetland soils account for one-third of all SOM; however, globally, coastal wetland soils are eroding faster due to increasing sea-level rise. Our understanding of carbon sequestration dynamics in wetlands lags behind that of upland soils.

View Article and Find Full Text PDF

Role of the Southern Annular Mode in the sea level over the southern Blue Amazon.

An Acad Bras Cienc

December 2024

Universidade Federal do Rio Grande do Sul, Centro Polar e Climático, Av. Bento Gonçalves, 9090, Agronomia, 91540-000 Porto Alegre RS, Brazil.

Regional sea level rise varies from the global average and is influenced by climate variability. We studied sea level anomalies in southern Brazil from 1993 to 2022, finding increasing trend from 1993 to 2022. We used oceanic and atmospheric dynamics to understand the rapid sea level rise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!