To investigate the mechanism by which the Bordetella BvgAS phosphorelay controls expression of at least three distinct phenotypic phases, we isolated and characterized two B. pertussis mutants that were able to express Bvg- and Bvg(i) phase phenotypes but not Bvg+ phase phenotypes. In both cases, the mutant phenotype was due to a single nucleotide change in bvgA resulting in a single amino acid substitution in BvgA. In vitro phosphorylation assays showed that BvgA containing the T194M substitution was significantly impaired in its ability to use either BvgS or acetyl phosphate as a substrate for phosphorylation. Binding studies indicated that this mutant protein was able to bind an oligonucleotide containing a high-affinity BvgA binding site in a manner similar to wild-type BvgA, but was defective for binding the fhaB promoter in the absence of RNA polymerase (RNAP). By contrast, BvgA containing the R152H substitution had wild-type phosphorylation properties but was severely defective in its ability to bind either the high-affinity BvgA binding site-containing oligonucleotide or the fhaB promoter by itself. Both mutant BvgA proteins were able to bind the fhaB promoter in the presence of RNAP however, demonstrating the profound effect that RNAP has on stabilizing the ternary complexes between promoter DNA, BvgA and RNAP. Our results are consistent with the hypothesis that BvgAS controls expression of multiple phenotypic phases by adjusting the intracellular concentration of BvgA-P and they demonstrate the additive nature of BvgA binding site affinity and protein-protein interactions at different Bvg-regulated promoters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2005.04875.x | DOI Listing |
Microbiol Immunol
December 2024
Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
The Gram-negative bacteria Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory diseases in various mammals.
View Article and Find Full Text PDFmSystems
April 2024
U1019-UMR9017, University of Lille, CNRS, Inserm, CHU Lille, CIIL-Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.
Comput Struct Biotechnol J
November 2022
Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
The BvgAS two-component system regulates virulence gene expression in . Although precise three-dimensional structural information is not available for the response regulator BvgA, its sequence conservation with NarL and previous studies have indicated that it is composed of 3 domains: an -terminal domain (NTD) containing the phosphorylation site, a linker, and a DNA-binding C-terminal domain (CTD). Previous work has determined how BvgA dimers interact with the promoter (P ) of , the gene encoding the virulence adhesin filamentous hemagglutinin.
View Article and Find Full Text PDFMicrobiol Spectr
October 2021
Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Noncoding small RNAs (sRNAs) are crucial for the posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. In the human pathogen Bordetella pertussis, which causes whooping cough, virulence is controlled primarily by the master two-component system BvgA (response regulator)/BvgS (sensor kinase). In this system, BvgA is phosphorylated (Bvg mode) or nonphosphorylated (Bvg mode), with global transcriptional differences between the two.
View Article and Find Full Text PDFSci Rep
April 2021
Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
Secretion of pertussis toxin (PT) is the preeminent virulence trait of the human pathogen Bordetella pertussis, causing whooping cough. Bordetella bronchiseptica, although it harbors an intact 12-kb ptx-ptl operon, does not express PT due to an inactive ptx promoter (Pptx), which contains 18 SNPs (single nucleotide polymorphisms) relative to B. pertussis Pptx.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!