A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clustered blockwise PCA for representing visual data. | LitMetric

Clustered blockwise PCA for representing visual data.

IEEE Trans Pattern Anal Mach Intell

Department of Computer Science, Columbia University, MC 0401, 1214 Amsterdam Avenue, New York, NY 10027, USA.

Published: October 2005

Principal Component Analysis (PCA) is extensively used in computer vision and image processing. Since it provides the optimal linear subspace in a least-square sense, it has been used for dimensionality reduction and subspace analysis in various domains. However, its scalability is very limited because of its inherent computational complexity. We introduce a new framework for applying PCA to visual data which takes advantage of the spatio-temporal correlation and localized frequency variations that are typically found in such data. Instead of applying PCA to the whole volume of data (complete set of images), we partition the volume into a set of blocks and apply PCA to each block. Then, we group the subspaces corresponding to the blocks and merge them together. As a result, we not only achieve greater efficiency in the resulting representation of the visual data, but also successfully scale PCA to handle large data sets. We present a thorough analysis of the computational complexity and storage benefits of our approach. We apply our algorithm to several types of videos. We show that, in addition to its storage and speed benefits, the algorithm results in a useful representation of the visual data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2005.193DOI Listing

Publication Analysis

Top Keywords

visual data
16
computational complexity
8
applying pca
8
representation visual
8
data
7
pca
6
clustered blockwise
4
blockwise pca
4
pca representing
4
visual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!