A method for conformal prostate thermal therapy using transurethral ultrasound heating applicators incorporating planar transducers is described. The capability to shape heating patterns to the geometry of the prostate gland from a single element in a multi-element heating applicator was evaluated using Bioheat transfer modelling. Eleven prostate geometries were obtained from patients who underwent MR imaging of the prostate gland prior to radical prostatectomy. Results indicate that ultrasound heating applicators incorporating multi-frequency planar transducers (4 x 20 mm, f = 4.7 MHz, 9.7 MHz) are capable of shaping thermal damage patterns to the geometry of individual prostates. A temperature feedback control algorithm has been developed to control the frequency, rotation rate and applied power level from transurethral heating applicators based on measurements of the boundary temperature during heating. The discrepancy between the thermal damage boundary and the target boundary was less than 5 mm, and the transition distance between coagulation and normal tissue was less than 1 cm. Treatment times for large prostate volumes were less than 50 min, and perfusion did not have significant impact on the control algorithm. Rectal cooling will play an important role in reducing undesired heating near the rectal wall. Experimental validation of the simulations in a tissue-mimicking gel phantom demonstrated good agreement between the predicted and generated patterns of thermal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/50/21/001 | DOI Listing |
Magn Reson Med Sci
January 2025
Department of Biomedical Engineering, Gachon University, Seongnam, Gyeonggi, Korea.
Purpose: Hyperthermia is a treatment that applies heat to damage or kill cancer cells and can be also used for drug deliveries. It is important to apply the heat into the specific area in order to target the cancer tissue and avoid damaging healthy tissue. For this reason, the development of heat applicators that have the capability to deliver the heat to the target area is vital.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
School of Engineering, University of Southern Queensland, Springfield, QLD, 4300, Australia.
Various hydrogels have been explored to create minimally invasive microneedles (MNs) to extract interstitial fluid (ISF). However, current methods are time-consuming and typically require 10-15 min to extract 3-5 mg of ISF. This study introduces two spiral-shaped swellable MN arrays: one made of gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA), and the other incorporating a combination of PVA, polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) for fast ISF extraction.
View Article and Find Full Text PDFInt J Hyperthermia
December 2024
Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Phys Med Biol
October 2024
Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada.
A reliable, calibrated, non-invasive thermometry method is essential for thermal therapies to monitor and control the treatment. Ultrasound (US) is an effective thermometry modality due to its relatively high sensitivity to temperature changes, and fast data acquisition and processing capabilities.In this work, the change in backscattered energy (CBE) was used to control the tissue temperature non-invasively using a real-time proportional-integral-derivative (PID) controller.
View Article and Find Full Text PDFIntracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!