CD80/CD86 costimulation regulates acute vascular rejection.

J Immunol

Division of Experimental Therapeutics, University Health Network, Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada.

Published: November 2005

Xenotransplantation may provide the only solution to the shortage of human donor organs. Although hyperacute rejection associated with xenotransplantation can now be overcome, acute vascular rejection (AVR) remains a primary barrier to xenotransplantation. To date, standard immunosuppressive agents fail to block AVR or prolong xenograft survival. The present study was undertaken to determine the role of CD80/CD86 costimulatory molecules in regulating AVR. Lewis rat hearts were transplanted heterotopically into wild-type or IL-12, CD80- or CD86-deficient C57BL/6 mice. Wild-type recipients were treated with CD80 or CD86 neutralizing Ab with and without daily cyclosporin A (CsA, 15 mg/kg). Transplanted hearts in untreated wild-type recipients were rejected on postoperative days (POD) 17-21 and showed cell-mediated rejection (CMR) and AVR pathologies. In contrast, transplanted hearts in IL-12 and CD80 recipients or wild-type recipients treated with CD80 neutralizing Ab were rapidly rejected on POD 5 and 6 with AVR pathology. Interestingly, hearts transplanted into CD86 knockout recipients or wild-type recipients treated with CD86 neutralizing Ab underwent CMR on POD 17. Finally, blockade of CD86 but not CD80 rendered xenograft recipients sensitive to daily CsA therapy, leading to indefinite xenograft survival. To conclude, we demonstrate that AVR can be overcome by blocking the CD86 costimulatory pathway. Furthermore, we demonstrate that CD80 and CD86 have opposing roles in regulation of xenotransplantation rejection, where CD80 drives CMR and attenuates AVR while CD86 drives AVR. Most strikingly, indefinite xenograft survival can be achieved by suppressing AVR with CD86 neutralization in combination of CsA therapy, which inhibits CMR.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.175.9.6197DOI Listing

Publication Analysis

Top Keywords

wild-type recipients
16
xenograft survival
12
recipients treated
12
avr
9
acute vascular
8
vascular rejection
8
hearts transplanted
8
treated cd80
8
cd86
8
cd80 cd86
8

Similar Publications

Germinal Center B Cells are Uniquely Targeted by Antibody-Suppressor CXCR5CD8 T Cells.

Transplant Direct

February 2025

Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH.

Background: Alloprimed antibody-suppressor CXCR5CD8 T cells (CD8 T cells) downregulate alloantibody production, mediate cytotoxicity of IgG B cells, and prolong allograft survival. The purpose of this investigation was to determine which immune-cell subsets are susceptible to CD8 T cell-mediated cytotoxicity or noncytotoxic suppression.

Methods: Alloprimed immune-cell subsets were evaluated for susceptibility to CD8 T cell-mediated in vitro cytotoxicity and/or suppression of intracellular cytokine expression.

View Article and Find Full Text PDF

Aging and chronic inflammation are associated with overabundant myeloid-primed multipotent progenitors (MPPs) amongst hematopoietic stem and progenitor cells (HSPCs). While HSC differentiation bias has been considered a primary cause of myeloid bias, whether it is sufficient has not been quantitatively evaluated. Here, we analyzed bone marrow data from the IκB- (Nfkbia+/-Nfkbib-/-Nfkbie-/-) mouse model of inflammation with elevated NFκB activity, which shows increased myeloid-biased MPPs.

View Article and Find Full Text PDF

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction.

Cardiovasc Diabetol

January 2025

Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.

Background: Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown.

Methods: A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated.

View Article and Find Full Text PDF

Enhanced Insulin Production From Porcine Islets: More Insulin, Less Islets.

Transpl Int

January 2025

Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium.

Clinical pancreatic islet xenotransplantation will most probably rely on genetically modified pigs as donors. Several lines of transgenic pigs carrying one and more often, multiple modifications already exist. The vast majority of these modifications aim to mitigate the host immune response by suppressing major xeno-antigens, or expressing immunomodulatory molecules that act locally at the graft site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!