The homeobox gene CHX10 is required for retinal progenitor cell proliferation early in retinogenesis and subsequently for bipolar neuron differentiation. To clarify the molecular mechanisms employed by CHX10 we sought to identify its target genes. In a yeast one-hybrid assay Chx10 interacted with the Ret1 site of the photoreceptor-specific gene Rhodopsin. Gel shift assays using in vitro translated protein confirmed that CHX10 binds to Ret1, but not to the similar Rhodopsin sites Ret4 and BAT-1. Using retinal nuclear lysates, we observed interactions between Chx10 and additional photoreceptor-specific elements including the PCE-1 (Rod arrestin/S-antigen) and the Cone opsin locus control region (Red/green cone opsin). However, chromatin immunoprecipitation assays revealed that in vivo, Chx10 bound sites upstream of the Rod arrestin and Interphotoreceptor retinoid-binding protein genes but not Rhodopsin or Cone opsin. Thus, in a chromatin context, Chx10 associates with a specific subset of elements that it binds with comparable apparent affinity in vitro. Our data suggest that CHX10 may target these motifs to inhibit rod photoreceptor gene expression in bipolar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M509470200 | DOI Listing |
Sci Rep
December 2024
INCI-UPR3212-CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France.
Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.
Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
N-(1,3-Dimethylbutyl)-'-phenyl-1,4-phenylenediamine (6PPD) and its oxidation product 6PPD-quinone (6PPDQ) showed different acute toxicities and bioaccumulation potencies in fish. In this study, we compared the thyroid disrupting effects of 6PPD and 6PPDQ through , , and assays. Interestingly, although 6PPD and 6PPDQ showed similar docking affinities with thyroid hormone receptor (TR) isoforms and GH3 cell inhibition effects, the thyroid signaling pathway, eye development, phototactic behaviors, and cell density in the retinal layer in the larval zebrafish were significantly affected only following 6PPD exposure.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico.
The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!