Download full-text PDF

Source
http://dx.doi.org/10.2144/000112023DOI Listing

Publication Analysis

Top Keywords

fluorescent two-color
4
two-color mount
4
mount situ
4
situ hybridization
4
hybridization platynereis
4
platynereis dumerilii
4
dumerilii polychaeta
4
polychaeta annelida
4
annelida emerging
4
emerging marine
4

Similar Publications

Single-molecule microscopy reveals that importin α slides along DNA while transporting cargo molecules.

Biochem Biophys Res Commun

February 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Faculty of Engineering and Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan. Electronic address:

Importin α is a crucial player in the nucleocytoplasmic transport of nuclear localization signal (NLS)-containing cargo proteins and is suggested to bind to DNA directly. We hypothesized that importin α, after binding to DNA, may move along DNA via sliding or hopping. We investigated the movement dynamics of importin αs fused to AcGFP along DNA using single-molecule fluorescence microscopy and single-tethered DNA arrays.

View Article and Find Full Text PDF

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Dynamic Monitoring of Organelle Interactions in Living Cells via Two-Color Digitally Enhanced Stimulated Emission Depletion Super-resolution Microscopy.

J Phys Chem Lett

January 2025

College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China.

One of the most significant advances in stimulated emission depletion (STED) super-resolution microscopy is its capacity for dynamic super-resolution imaging of living cells, including the long-term tracking of interactions between various cells or organelles. Consequently, the multicolor STED plays a pivotal role in biological research. Despite the emergence of numerous fluorescent probes characterized by low toxicity, high stability, high brightness, and exceptional specificity, enabling dynamic imaging of living cells with multicolor STED, practical implementation of multicolor STED for live-cell imaging is influenced by several factors.

View Article and Find Full Text PDF

Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation.

View Article and Find Full Text PDF

Phasor-FSTM: a new paradigm for multicolor super-resolution imaging of living cells based on fluorescence modulation and lifetime multiplexing.

Light Sci Appl

January 2025

Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.

Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!