Objective: To explore the effect of partial dorsal root rhizotomy and Acup on culturing dorsal root ganglion(DRG) in vitro.
Methods: Ten adult cats were divided into 2 groups: normal control group; Acup spared DRG 7 d group, in which bilateral L1-L5, L7-S2 DRG were removed; and L6DRG were spared; then unilaterally two sets of acupoints [Zusanlily (St. 36) and Xuanzhong (G. B. 39): Futu (St. 32) and Sanyinjiao (Sp. 6) located in the distribution area of spinal nerve L6] were electro-stimulated alternatively 30 min everyday by electro-needling. Five cats were used in every group. Bilateral L6 DRGs of every group were taken out on the condition of asepsis and were cultured respectively in vitro. Cultures were terminated after day 7. Then the cultured cells were stained under the same condition using specific NSE (1 : 200) antibody, a neuron-specific marker, by the immunohistochemistry ABC method. The neurite length was measured by micro-measured ruler in upside-down light microscope on the 1st, 3rd, 5th, 7th day.
Results: Immunocytochemical staining revealed that over 95% cells were NSE positive cells which were the typical neuron of DRG in vitro; on the 1st, 3rd, 5th, 7th day, the average neurite length of the normal group was shorter than that of the spared DRG group(P < 0. 05), and the spared DRG group's was shorter than the Acup group's at each time stage (P < 0.05).
Conclusion: These results indicated that DRG had plasticity and acupuncture probably promoted the plasticity, which were probably in close relation with the spinal plasticity.
Download full-text PDF |
Source |
---|
Pharmacol Res
December 2024
Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria. Electronic address:
Our understanding of how sex and age influence chronic pain at the molecular level is still limited with wide-reaching consequences for adolescent patients. Here, we leveraged deep proteome profiling of mouse dorsal root ganglia (DRG) from adolescent (4-week-old) and adult (12-week-old) male and female mice to investigate the establishment of neuropathic pain in the spared nerve injury (SNI)-model in parallel. We quantified over 12,000 proteins, including notable ion channels involved in pain, highlighting the sensitivity of our approach.
View Article and Find Full Text PDFJ Headache Pain
December 2024
Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
Background: Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain.
View Article and Find Full Text PDFJ Peripher Nerv Syst
December 2024
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania.
Background And Aims: Colony-stimulating factor 1 (CSF1) is a growth factor secreted by dorsal root ganglia (DRG) neurons important for DRG macrophages and spinal cord (SC) microglia injury-induced proliferation and activation, specifically released after spared nerve injury (SNI). In this study, we investigated if SNI-induced CSF1 expression and perineuronal rings of macrophages around mouse DRG neurons vary between L3-L5 DRG and with the neuronal type, and if the CSF1 neuronal projections at the SC dorsal horns were associated with an increased microglial number in the corresponding laminae.
Methods: Seven days after surgery, L3-L5 DRG as well as their corresponding segments at the SC level were collected, frozen, and cut.
Sci Rep
November 2024
Department of Genetics, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA.
The transcription repressor REST in the dorsal root ganglion (DRG) is upregulated by peripheral nerve injury and promotes the development of chronic pain. However, the genes targeted by REST in neuropathic pain development remain unclear. The expression levels of four opioid receptor genes (Oprm1, Oprd1, Oprl1 and Oprk1) and the cannabinoid CB1 receptor (Cnr1) gene in the DRG regulate nociception.
View Article and Find Full Text PDFChronic visceral pain management remains challenging due to limitations in selective targeting of C-fiber nociceptors. This study investigates temporal interference stimulation (TIS) on dorsal root ganglia (DRG) as a novel approach for selective C-fiber transmission block. We employed (1) GCaMP6 recordings in mouse whole DRG using a flexible, transparent microelectrode array for visualizing L6 DRG neuron activation, (2) ex vivo single-fiber recordings to assess sinusoidal stimulation effects on peripheral nerve axons, (3) in vivo behavioral assessment measuring visceromotor responses (VMR) to colorectal distension in mice, including a TNBS-induced visceral hypersensitivity model, and (4) immunohistological analysis to evaluate immediate immune responses in DRG following TIS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!