A dysfunctional ubiquitin-proteasome system recently has been proposed to play a role in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). We have shown previously that spinal motor neurons are more vulnerable to proteasome inhibition-induced neurotoxicity, using a dissociated culture system. To confirm this toxicity, we used organotypic slice cultures from rat neonatal spinal cords, which conserve the structure of the spinal cord in a horizontal plane, enabling us to identify motor neurons more accurately than in dissociated cultures. Furthermore, such easy identifications make it possible to follow up the course of the degeneration of motor neurons. When a specific proteasome inhibitor, lactacystin (5 microM), was applied to slice cultures, proteasome activity of a whole slice was suppressed below 30% of control. Motor neurons were selectively damaged, especially in neurites, with the increase of phosphorylated neurofilaments. They were eventually lost in a dose-dependent manner (1 microM, P < 0.05; 5 microM, P < 0.01). The low capacity of Ca(2+) buffering is believed to be one of the factors of selectivity for damaged motor neurons in ALS. In our system, negative staining of Ca(2+)-binding proteins supported this notion. An intracellular Ca(2+) chelator, BAPTA-AM (10 microM), exerted a significant protective effect when it was applied with lactacystin simultaneously (P < 0.01). We postulate that proteasome inhibition is an excellent model for studying the mechanisms underlying selective motor neuron death and searching for new therapeutic strategies in the treatment of ALS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20665 | DOI Listing |
Neurobiol Dis
January 2025
The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX, United States of America. Electronic address:
Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and NDDs (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al.
View Article and Find Full Text PDFCell Rep
January 2025
Institut Interdisciplinaire de Neurosciences (IINS), University Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Centre Broca Nouvelle-Aquitaine, 146, rue Léo-Saignat, 33076 Bordeaux, France. Electronic address:
Optimal decision-making depends on interconnected frontal brain regions, enabling animals to adapt decisions based on internal states, experiences, and contexts. The secondary motor cortex (M2) is key in adaptive behaviors in expert rodents, particularly in encoding decision values guiding complex probabilistic tasks. However, its role in deterministic tasks during initial learning remains uncertain.
View Article and Find Full Text PDFGBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology.
View Article and Find Full Text PDFInactivation of disease alleles by allele-specific editing is a promising approach to treat dominant-negative genetic disorders, provided the causative gene is haplo-sufficient. We previously edited a dominant missense mutation with inactivating frameshifts and rescued disease-relevant phenotypes in induced pluripotent stem cell (iPSC)-derived motor neurons. However, a multitude of different missense mutations cause disease.
View Article and Find Full Text PDFDiverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!