Density functional theory calculations have been performed to probe aspects of the function of the reaction centres of the DMSO reductase enzymes, in respect of catalysis of oxygen atom transfer (OAT). The first comparison between Mo and W at the active site of these enzymes has been accomplished by a consideration of the reaction profile for OAT from DMSO to [MoIV(OMe)(S2C2H2)2]1- versus that for the corresponding reaction with [WIV(OMe)(S2C2H2)2]1-. Both reaction profiles involve two transition states separated by a well-defined intermediate; however, whilst the second transition state (TS2) is clearly rate-limiting for the Mo system, the two transition states have a similar energy for the W system. The activation energy for OAT from DMSO to [WIV(OMe)(S2C2H2)2]1- is ca. 23 kJ mol-1 lower for the corresponding reaction with Mo, consistent with the significantly faster rate of reduction of DMSO by Rhodobacter capsulatus W-DMSO reductase than by its Mo counterpart. Consistent with the principle of the entatic state, the geometrical constraints imposed by the protein on the metal centre of the Mo- and W-DMSO reductases facilitate OAT by favouring a trigonal prismatic geometry for the transition state TS2 that is close to that observed for the metal in the oxidised form of each of these enzymes. The effects of different tautomers of a simplified form of the pyran ring-opened, dihydropterin state of the molybdopterin cofactor on the reaction profile for OAT have been considered. The major effect, a significant lowering of the activation barrier associated with TS2, is observed for a protonated form of a tautomer that involves conjugation between the pyrazine and metallodithiolene rings.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b507206aDOI Listing

Publication Analysis

Top Keywords

centres dmso
8
reaction profile
8
profile oat
8
oat dmso
8
corresponding reaction
8
transition states
8
transition state
8
state ts2
8
reaction
6
dmso
5

Similar Publications

Visible-Light-Induced Annulation of Benzothioamides with Sulfoxonium Ylides To Construct Thiazole Derivatives.

Org Lett

January 2025

Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.

Herein, visible-light-induced annulation of benzothioamides with sulfoxonium ylides to furnish thiazole derivatives is developed under transition-metal-, photocatalyst-, and oxidant-free conditions. This protocol exhibits good substrate scope, affording the desired products with satisfied yields in a mild and green manner. Detailed mechanistic studies suggest that the benzothioamide substrate plays a dual role in this reaction.

View Article and Find Full Text PDF

Erratum to "Dietary state and impact of DMSO on Caenorhabditis elegans aging: Insights from healthspan analysis"[Biochem. Biophys. Res. Commun. (742),2025, 151156].

Biochem Biophys Res Commun

January 2025

Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. Electronic address:

View Article and Find Full Text PDF

Objective:  Particulate matter 2.5 (PM2.5), an important air pollution particle, has been previously studied for its effects on various normal and cancer tissues.

View Article and Find Full Text PDF

Optimization and Calibration of 384-well Kinetic Ca Mobilization Assays for the Human Transient Receptor Potential Cation Channels TRPM8, TRPV1, and TRPA1.

SLAS Discov

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA. Electronic address:

Development, optimization, and calibration of human transient receptor potential (TRP) channel Ca mobilization assays for TRPM8, TRPV1, and TRPA1 are described. Heterologous expression of hTRPM8 in HEK293T cells was required for anti-TRPM8 antibody staining and TRPM8 agonist induced Ca mobilization signals which were both used to optimize transfection efficiency. FLIPR Calcium 6 dye concentration, loading time, and TRPM8 transfected cell seeding density were optimized and a DMSO tolerance of ≤0.

View Article and Find Full Text PDF

A Cosolvent Electrolyte Boosting Electrochemical Alkynol Semihydrogenation.

J Am Chem Soc

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

Green electricity-driven alkenol electrosynthesis via electrocatalytic alkynol semihydrogenation represents a sustainable route to conventional thermocatalysis. Both the electrocatalyst and electrolyte strongly impact the semihydrogenation performance. Despite significant progress in developing sophisticated electrocatalysts, a well-designed electrolyte in conjunction with industrial catalysts is an attractive strategy to advance the industrialization process of electrocatalytic alkynol semihydrogenation, but remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!