Background: The synthetic tripeptide arsenical 4-(N-(S-glutathionylacetyl)amino) phenylarsenoxide (GSAO) is an angiogenesis inhibitor that targets the mitochondria of actively dividing but not quiescent endothelial cells, arresting their proliferation and causing apoptosis. Normal endothelial cells are much more sensitive to GSAO than tumor cells. To elucidate the mechanism of tumor cell resistance, we identified yeast genes that are necessary for resistance to GSAO.

Methods: We screened a genome-wide set of 4546 Saccharomyces cerevisiae deletion strains to identify GSAO-sensitive strains. We then examined GSAO accumulation in and proliferation activity of endothelial cells (BAECs) and tumor cells treated with GSAO and modulators of pathways and proteins identified in the yeast screen. We also examined GSAO effects on proliferation of mammalian cells transfected with transporter protein constructs.

Results: Eighty-eight deletion strains were sensitive to GSAO. The most sensitive strains had deletions of genes whose products are involved in vacuolar function (corresponding to drug transport in mammalian cells) and glutathione synthesis. BAECs were more sensitive to GSAO than tumor cells, and cell sensitivity to GSAO was approximately proportional to cellular glutathione levels. Treatment of BAECs and tumor cells with MK-571, an inhibitor of multidrug resistance-associated protein (MRP), or with buthionine sulfoximine, an inhibitor of glutathione synthesis, increased their sensitivity to GSAO. Mammalian cells transfected with MRP1 or MRP2 were resistant to GSAO, whereas cells transfected with MRP3, MRP4, MRP5, P-glypoprotein, or breast cancer resistance protein were not.

Conclusions: Differences in MRP activity and cellular glutathione levels contribute to the selectivity of GSAO for endothelial versus tumor cells. MRP1 and/or MRP2 may transport GSAO from resistant cells, with glutathione acting as a cotransporter. Genetic screening in yeast is a powerful tool for understanding drug action in mammalian cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/dji316DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
mammalian cells
16
cells
14
deletion strains
12
gsao
12
endothelial cells
12
sensitive gsao
12
cells transfected
12
angiogenesis inhibitor
8
genome-wide set
8

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!