A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. | LitMetric

Human embryonic stem cells (hESC) are pluripotent cells that proliferate indefinitely in culture, whilst retaining their capacity for differentiation into different cell types. However, hESC cultures require culture in direct contact with feeder cells or conditioned medium (CM) from feeder cells. The most common source of feeders has been primary mouse embryonic fibroblast (MEF). In this study, we immortalized a primary MEF line with the E6 and E7 genes from HPV16. The immortal line, DeltaE-MEF, was able to proliferate beyond 7-9 passages and has an extended lifespan beyond 70 passages. When tested for its ability to support hESC growth, it was found that hESC continue to maintain the undifferentiated morphology for >40 passages both in co-culture with DeltaE-MEF and in feeder-free cultures supplemented with CM from DeltaE-MEF. The cultures also continue to express the pluripotent markers, Oct-4, SSEA-4, Tra-1-60, Tra-1-81, alkaline phosphatase and maintain a normal karyotype. In addition, these hESC formed teratomas when injected into SCID mice. Lastly, we demonstrated the feasibility of scaling-up significant quantities of undifferentiated hESC (>10(8) cells) using DeltaE-MEF in cell factories. The results from this study suggest that immortalized feeders can provide a consistent and reproducible source of feeders for hESC expansion and research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2005.09.008DOI Listing

Publication Analysis

Top Keywords

immortalized feeders
8
human embryonic
8
embryonic stem
8
stem cells
8
feeder cells
8
source feeders
8
study immortalized
8
hesc
7
cells
6
feeders scale-up
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!