Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous film by electrospinning and composited with hydroxyapatite (HAp) by soaking in simulated body fluid. Compared with a PHBV cast (flat) film, the electrospun PHBV nanofibrous film was hydrophobic. However, after HAp deposition, both of the surfaces were extremely hydrophilic. The degradation rate of HAp/PHBV nanofibrous films in the presence of polyhydroxybutyrate depolymerase was very fast. Nanofiber formation increased the specific surface area and HAp enhanced the invasion of enzyme into the film by increasing surface hydrophilicity. The surface of the nanofibrous film showed enhanced cell adhesion over that of the flat film, although cell adhesion was not significantly affected by the combination with HAp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1263/jbb.100.43 | DOI Listing |
Materials (Basel)
November 2024
Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece.
In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
Infected wounds caused by bacteria commonly cause delayed wound healing and even serious tissue damage, evolving into one of the most problematic clinical issues. Traditional therapies and wound dressings cannot achieve either the ideal antibiotic activity or the accelerated wound healing outcomes. Based on our previous finding that glycoproteins (PAGP) derived from medicinal animal insect Periplaneta americana L.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, PR China. Electronic address:
Aqueous zinc-ion hybrid micro-supercapacitors (AZIHMSCs) with high power density, moderate energy density, good cycle life and excellent safety are promising candidates for micro-energy storage. Among them, AZIHMSCs based on TiCT MXene anodes and battery-type cathodes can provide superior performance. However, two-dimensional (2D) TiCT MXene electrodes have an inherent restacking issue and -F surface terminations that hinder ion diffusion and ultimately reduce the energy storage capacity of the corresponding AZIHMSCs.
View Article and Find Full Text PDFRSC Adv
December 2024
Civil and Environmental Engineering Department, University of Perugia Strada di Pentima 4 05100 Terni Italy
The ability of fungi and bacteria to form biofilms on surfaces poses a serious threat to health and a problem in industrial settings. In this work, we investigated how the surface stiffness of silk fibroin (SF) films is modulated by the interaction with black phosphorus (BP) flakes, quantifying the morphogenesis of cells. Raman and infrared (IR) spectroscopies, along with scanning transmission electron microscopy, allowed us to quantify the thickness and diameter of BP flakes dispersed in the SF matrix (, 5.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!