Arthrobacter globiformis FERM BP-360 produces uricase (urate oxidase; EC 1.7.3.3) intracellularly. A genomic library of the bacterium, prepared in the plasmid vector pUC118, was screened with probes based on the amino acid sequence of the purified uricase. We found that a chimeric plasmid in the library, designated pUOD1, carries a 2.0-kb DNA insert from the Arthrobacter DNA that hybridizes with the probe. The DNA insert contains an ORF consisting of 302 amino acids with a calculated molecular mass of 33,858. The protein translated from the ORF displays the highest identity (67%) to uricase from a bacterium, Cellulomonas flavigena. X-ray fluorescence analysis showed that the Arthrobacter uricase contains copper ion. However, we found that the catalytic activity of uricase is inhibited by the excessive addition of copper ion. Although the production of A. globiformis uricase is induced by the addition of uric acid to the culture medium, Escherichia coli harboring pUOD1 produced 20-fold higher uricase than the original Arthrobacter strain, even without an inducer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1389-1723(04)00259-2DOI Listing

Publication Analysis

Top Keywords

uricase
8
arthrobacter globiformis
8
escherichia coli
8
dna insert
8
copper ion
8
arthrobacter
5
molecular cloning
4
cloning expression
4
expression uricase
4
uricase gene
4

Similar Publications

Unveiling the Emerging Role of Xanthine Oxidase in Acute Pancreatitis: Beyond Reactive Oxygen Species.

Antioxidants (Basel)

January 2025

Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.

Acute pancreatitis (AP) is a potentially fatal acute digestive disease that is widespread globally. Although significant progress has been made in the previous decade, the study of mechanisms and therapeutic strategies is still far from being completed. Xanthine oxidase (XO) is an enzyme that catalyzes hypoxanthine and xanthine to produce urate and is accompanied by the generation of reactive oxygen species (ROS) in purine catabolism.

View Article and Find Full Text PDF

We investigated the role of uric acid in the pathogenesis of severe malaria (SM) in two independent cohorts of children with SM. Hyperuricemia (blood uric acid ≥ 7 mg dl) was present in 25% of children with SM and was associated with increased in-hospital mortality and postdischarge mortality in both cohorts. Increased blood uric acid levels were also associated with worse scores in overall cognition in children with SM < 5 years old in both cohorts.

View Article and Find Full Text PDF

Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.

View Article and Find Full Text PDF

Gout is a disease caused by the deposit of monosodium urate (MSU) crystals that produce joint inflammation and subcutaneous nodules (tophi). The treatment of gout aims to reduce serum uric acid (sUA) levels by administering urate-lowering therapies (ULT) such as xanthine oxidase inhibitors (XOI: allopurinol, febuxostat) or uricosurics (e.g.

View Article and Find Full Text PDF

Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout.

Front Bioeng Biotechnol

January 2025

Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China.

Introduction: Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (HO) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety.

Methods: We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!