Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli.

J Biosci Bioeng

Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

Published: November 2005

Molecular chaperone DnaK of halophilic Tetragenococcus halophilus JCM5888 was characterized under salinity conditions both in vitro and in vivo. The dnaK gene was cloned into an expression vector and transformed into Escherichia coli. The DnaK protein obtained from the recombinant E. coli showed a significantly higher refolding activity of denatured lactate dehydrogenase than that from non-halophilic Lactococcus lactis under NaCl concentrations higher than 1 M. E. coli without the overexpression of DnaK exhibited a growth profile with a prolonged lag phase and suppressed maximum cell density in Luria-Bertani medium containing 5% (0.86 M) NaCl. On the contrary, the overexpression of T. halophilus DnaK greatly shortened this prolonged lag phase with no effect on maximum growth, while that of L. lactis DnaK decreased maximum growth. The amount of protein aggregates was increased by salt stress in the E. coli cells, while this aggregation was greatly suppressed by the overexpression of T, halophilus DnaK. These results suggest that heterologous overexpression of T. halophilus DnaK, via its chaperone activity, promotes salinity adaptation of E. coli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1389-1723(03)90114-9DOI Listing

Publication Analysis

Top Keywords

overexpression halophilus
12
halophilus dnak
12
dnak
9
molecular chaperone
8
chaperone dnak
8
tetragenococcus halophilus
8
salinity adaptation
8
escherichia coli
8
prolonged lag
8
lag phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!