Three minichromosomes, miniP7, miniB7, and miniK4 of 800 kbp, 450 kbp, and 550 kbp, respectively, were obtained from Chlorella vulgaris chromosome I by electron-beam irradiation. Two of them were structurally characterized: MiniP7 was formed by the deletion of an internal 180 kbp close to the right end of chromosome I. The 180-kbp region with a small interspersed nuclear element (SINE)-like element on its left terminus was translocated to another chromosome, leaving a footprint-like structure on miniP7. MiniB7 was a hybrid of chromosome I and another chromosome, retaining the left telomere and the centromere of chromosome I. The centromeric repetitive elements served as a rearrangement point in the miniB7 formation. These examples showed the complicated mechanisms involved in the minichromosome formation. The minichromosomes thus obtained can be useful for isolating the fundamental structural elements of a chromosome. Moreover, they may serve as starting materials or a vector to generate artificial chromosomes carrying useful genes.
Download full-text PDF |
Source |
---|
Cells
December 2024
Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA.
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system.
View Article and Find Full Text PDFNat Commun
January 2025
DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, USA.
Cell cycle checkpoints are the regulatory mechanisms that secure the strict order of cellular events for cell division that ensure genome integrity. It has been proposed that mitosis initiation depends on the completion of DNA replication, which must be tightly controlled to guarantee genome duplication. Contrary to these conventional hypotheses, we showed here that cells were able to enter mitosis without completion of DNA replication.
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory of Virology and Biosafety and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.
Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.
View Article and Find Full Text PDFNat Commun
January 2025
DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK.
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!