Rhodococcus erythropolis strain KA2-5-1 is unable to desulfurize 4,6-dipropyl dibenzothiophene (DBT) in the oil phase. The dsz desulfurization gene cluster from R. erythropolis strain KA2-5-1 was transferred into 22 rhodococcal and mycobacterial strains using a transposon-transposase complex. The recombinant strain MR65, from Mycobacterium sp. NCIMB10403, was able to grow on a minimal medium supplemented with 1.0 mM 4,6-dipropyl DBT in n-tetradecane (50%, v v ) as the sole sulfur source. Resting cells of recombinant strain MR65 could desulfurize 68 mg l- of sulfur in light gas oil (LGO) containing 126 mg sulfur l-. Strain MR65 had about 1.5-times the LGO desulfurization activity of R. erythropolis strain KA2-5-1. The application of a recombinant, which is able to utilize 4,6-dipropyl DBT in the oil phase, was effective in enhancing LGO biodesulfurization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1389-1723(03)80067-1 | DOI Listing |
Microorganisms
December 2024
Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.
Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Sciences" (FRC PSCBR RAS), 142290 Pushchino, Russia.
Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
Polyethylene (PE) is the most-produced polyolefin, and consequently, it is the most widely found plastic waste worldwide. PE biodegradation is under study by applying different (micro)organisms in order to understand the biodegradative mechanism in the majority of microbes. This study aims to identify novel bacterial species with compelling metabolic potential and strategic genetic repertoires for PE biodegradation.
View Article and Find Full Text PDFMicrobes Environ
July 2024
Graduate School of Agriculture, Hokkaido University.
Polyethylene (PE), a widely used recalcitrant synthetic polymer, is a major global pollutant. PE has very low biodegradability due to its rigid C-C backbone and high hydrophobicity. Although microorganisms have been suggested to possess PE-degrading enzymes, our understanding of the PE biodegradation process and its overall applicability is still lacking.
View Article and Find Full Text PDFBioprocess Biosyst Eng
September 2024
Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil.
Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!