Uptake and utilization of ectoine by halotolerant Brevibacterium sp. JCM 6894 subjected to osmotic downshock.

J Biosci Bioeng

Research Institute for Marine Cargo Transportation, Kobe University of Mercantile Marine, 5-1-1 Fukae, Higashinada-ku, Kobe 658-0022, Japan.

Published: November 2005

AI Article Synopsis

  • The cyclic amino acid ectoine is released by Brevibacterium sp. JCM 6894 cells when subjected to osmotic downshock, with about 60% of it being expelled into deionized water.
  • During incubation, ectoine levels decrease linearly inside and outside the cells, but with time, they can also start taking up ectoine from their surroundings, especially in the absence of external sodium ions.
  • Overall, ectoine appears crucial for the survival and growth of these cells after the osmotic shift, highlighting its role beyond just osmoregulation.

Article Abstract

The concentration changes of the cyclic amino acid ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyridine carboxylic acid) in Brevibacterium sp. JCM 6894 cells subjected to an osmotic downshock were investigated. When the cells grown in the presence of 2 M NaCl were suspended in deionized water, they immediately released about 60% of the ectoine synthesized intracellularly. During the subsequent incubation, we observed that both the extra- and intracellular concentrations of ectoine were reduced almost linearly with the incubation time. When ectoine was provided externally to the downshocked cells, a similar reduction in both intra- and extracellular ectoine concentrations was recognized. In addition, we observed an increase in ectoine accumulation at about 10 h of incubation, which indicates that ectoine was taken up by such downshocked cells in the absence of external Na+. Furthermore, the downshocked cells showed higher levels of survival, respiration, and growth in the presence of ectoine than in its absence. The ability to take ectoine up was induced in the cells grown in the presence of >0.25 M NaCl for >12 h. Thus, we conclude that even under the lower osmotic condition ectoine might be taken up and subsequently utilized by strain JCM 6894 subjected to the osmotic downshock, indicating that the uptake of ectoine by such cells occurred for the survival and growth of the cell itself rather than for cellular osmoregulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1389-1723(02)80222-5DOI Listing

Publication Analysis

Top Keywords

ectoine
12
jcm 6894
12
subjected osmotic
12
osmotic downshock
12
downshocked cells
12
brevibacterium jcm
8
6894 subjected
8
cells grown
8
grown presence
8
cells
7

Similar Publications

Draft genome sequence of FH1.

Microbiol Resour Announc

December 2024

Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.

Phytopathogens with multi-drug resistance are emerging frequently, resulting in various disease outbreaks. Hence, exploring new antimicrobials is urgent. Here, we present the draft genome sequence of FH1 strain, with the potential to produce various antimicrobial compounds.

View Article and Find Full Text PDF

Metabolic engineering of Bacillus licheniformis DW2 for ectoine production.

World J Microbiol Biotechnol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China.

Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABC expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.

View Article and Find Full Text PDF

Background: is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of under salt stress are not fully understood.

View Article and Find Full Text PDF

Metabolic Engineering of for Efficient Production of Ectoine.

J Agric Food Chem

December 2024

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in .

View Article and Find Full Text PDF

Strain W from Estuarine Sediments Dechlorinates 1,2-Dichloroethane under Elevated Salinity.

Environ Sci Technol

December 2024

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.

Organohalide-respiring bacteria (OHRB) have been found in various environments and play an indispensable role in the biogeochemical cycling and detoxification of halogenated organic compounds (HOCs). Currently, few ORHB have been reported to perform reductive dechlorination under high salinity conditions, indicating a knowledge gap on the diversity of OHRB and the survival strategy of OHRB in saline environments (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!