A phytase from Candida krusei WZ-001 isolated from soil was purified to electrophoretic homogeneity by ion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The phytase is composed of two different subunits with molecular masses of 116 kDa and 31 kDa on SDS-PAGE (or 120 kDa and 30 kDa on gel chromatography), with the larger subunit having a glycosylation rate of around 35%. The phytase has an optimum pH of 4.6, an optimum temperature of 40 degrees C and a pI value of 5.5. The phytase activity was stimulated by 2-mercapto-ethanol and dithiothreitol (DTT), and inhibited by Zn2+, Mg2+, iodoacetate, pI value of 5.5. The phytase activity was stimulated by 2-mercapto-ethanol ethanol and dithiothreitol (DTT), and inhibited by Zn2+, Mg2+, iodoacetate, p-chroloromercuribenzoate (pCMB) and phenylmethylsulfonyl fluoride (PMSF). The phytase displayed a broad substrate specificity and the K(m) for phytate was 0.03 mM. Phytate was sequentially hydrolyzed by the phytase. Furthermore, 1D and 2D NMR analyses and bioassay of myoinositol indicated that the end hydrolysis product of phytate was myoinositol 2-monophosphate.
Download full-text PDF |
Source |
---|
Microorganisms
November 2024
Environmentally-Friendly Agricultural Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
Members of species are able to enhance the level of available phosphorus (P) for plant absorption through mechanisms of P solubilization and mineralization. In our study, PE7 showed P-solubilizing activity in simple phosphate broth (SPB) medium, and acetic acid, iso-butyric acid, and iso-valeric acid were major organic acids responsible for the increase in soluble P and decrease in pH of SPB medium. In addition, strain PE7 released phytase on phytase-screening agar (PSA) medium, and analysis of semi-quantitative reverse transcription and polymerase chain reaction (sqRT-PCR) revealed that the gene expression was the highest at 1 day after incubation.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Animal Science, University of Pretoria, Pretoria 0002, South Africa.
To begin formulating broiler diets on a digestible calcium (Ca) basis, robust Ca digestibility values for ingredients and factors affecting this digestibility are needed. This study had three main objectives: (1) determine the standardized ileal digestibility (SID) of Ca and phosphorus (P) for seven plant-based feed ingredients in broilers, (2) assess the impact of phytate source on SID Ca from limestone (LS), and (3) evaluate the effect of phytase on SID Ca and P for the different ingredients. Two experiments were conducted to satisfy these objectives.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Departamento de Zootecnia, Universidade Federal da Paraíba, Rodovia PB-079, Areia 58397-000, PB, Brazil.
In tropical and subtropical climate regions, heat stress is one of the main causes of production losses in laying quails, aggravated by the antinutritional effects of the phytate in diet ingredients, which negatively affect the bioavailability of minerals, especially calcium and phosphorus. This situation results in a reduction in production and the quality of eggs from commercial laying quails. Several nutritional strategies are utilized to reduce the adverse effects of high temperatures and antinutritional factors such as phytate.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India.
Appl Biochem Biotechnol
January 2025
College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China.
Phosphorus in soil mostly exists in complex compounds such as phytic acid, which reduces the effectiveness of phosphorus and limits agricultural production. Phytase has the activity of hydrolyzing phytate into phosphate. The mineralization of phytate in soil by phytase secreted by microorganisms is an effective way to improve the utilization rate of phytate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!