In an attempt to produce a bovine pancreatic ribonuclease A (RNase A) with increased activity and stability, the catalytic pair of His12 and His119 was substituted with aspartic acid or glutamic acid, and aspartic acid, respectively, to evaluate the role of the two histidine residues in the activity and stability. Kinetic analysis revealed that k(cat)/K(m) values were significantly reduced for all mutant enzymes due to a decreased k(cat) rather than an increased K(m): the k(cat) values for both CpA and C>p of H12D and H12E decreased to about 1/1000; the k(cat) values of H119D decreased by 1/3300 for CpA and 1/80 for C>p. Thus, neither Asp nor Glu is able to act solely as an efficient catalytic residue of RNase A. Alkylation with iodoacetic acid (IAA) revealed that mutant enzymes had reduced reaction rates and that no modification was evident at Glu12 and Asp12 of H12E and H12D, respectively. This indicates that the low catalytic activity of mutant enzymes could be due to low basicity of Asp12 and Glu12. While the T(m) of H119D was almost the same as that of the wild-type enzyme, the T(m) of both H12D and H12E markedly decreased. It became apparent that His12 located at the bottom of the active site cleft contributes significantly to the structural stability of RNase A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1263/jbb.94.39 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.
View Article and Find Full Text PDFMol Divers
January 2025
Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!