Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Four cellulose-degrading enzymes were identified in a solid-state culture of Aspergillus oryzae. The three major enzymes were purified and named Cel-1, Cel-2, and Cel-3, respectively. The molecular weights were determined to be 62, 120, and 34 kDa, respectively. The optimum temperature of Cel-3 activity was higher than that of the other enzymes. An acidic pH was found to be more suitable for Cel-1 activity than for the other enzymes, and Cel-3 was more stable under acidic conditions than the other two. These properties and the results of a protein homology search for N-terminal amino acid sequences suggest that Cel-1 and Cel-3 correspond to the previously isolated endo-1,4-beta-glucanase CelB and CelA, respectively. The analysis of substrate specificity suggested that Cel-2 is likely to be beta-glucosidase. The effect of Cel-1, Cel-2, and Cel-3 on the sake mash fermentation was determined and it was found that Cel-2 markedly improved material utilization and alcohol yield in sake mash fermentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1389-1723(02)80095-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!