Background: The treatment of spinal cord injury is still a challenge. This study aimed at evaluating the therapeutical effectiveness of neurons derived form mesenchymal stem cells (MSCs) for spinal cord injury.
Methods: In this study, rhesus MSCs were isolated and induced by cryptotanshinone in vitro and then a process of RT-PCR was used to detect the expression of glutamic acid decarboxylase (GAD) gene. The induced MSCs were tagged with Hoechst 33342 and injected into the injury site of rhesus spinal cord made by the modified Allen method. Following that, behavior analysis was made after 1 week, 1 month, 2 months and 3 months. After 3 months, true blue chloride retrograde tracing study was also used to evaluate the re-establishment of axons pathway and the hematoxylin-eosin (HE) staining and immunohistochemistry were performed after the animals had been killed.
Results: In this study, the expression of mRNA of GAD gene could be found in the induced MSCs but not in primitive MSCs and immunohistochemistry could also confirm that rhesus MSCs could be induced and differentiated into neurons. Behavior analysis showed that the experimental animals restored the function of spinal cord up to grade 2-3 of Tarlov classification. Retrograde tracing study showed that true blue chollide could be found in the rostral thoracic spinal cords, red nucleus and sensory-motor cortex.
Conclusions: These results suggest that the transplantation is safe and effective.
Download full-text PDF |
Source |
---|
Orphanet J Rare Dis
January 2025
The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.
Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.
Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.
J Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFSpinal Cord
January 2025
Physiotherapy Department, Austin Health, Melbourne, VIC, Australia.
Study Design: Registry-based cohort study.
Objectives: To evaluate the impact of the introduction of a new bladder management model of care at the Victorian Spinal Cord Service (VSCS) on the incidence of subsequent emergency department presentations and readmissions to hospital for urinary tract infection (UTI) in the first 2 years after injury.
Setting: VSCS, Austin Health, Melbourne, Australia.
Sci Rep
January 2025
Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
Spinal cord injury (SCI) is a profound ailment lacking a well-defined molecular mechanism and effective treatments. Cuproptosis, identified as a recently discovered cell death pathway, exhibits diverse roles in various cancers. Nevertheless, its involvement in SCI is yet to be elucidated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.
We aimed to analyze the cervical sagittal alignment change following the growing rod treatment in early-onset scoliosis (EOS) and identify the risk factors of sagittal cervical imbalance after growing-rod surgery of machine learning. EOS patients from our centre between 2007 and 2019 were retrospectively reviewed. Radiographic parameters include the cervical lordosis (CL), T1 slope, C2-C7 sagittal vertical axis (C2-7 SVA), primary curve Cobb angle, thoracic kyphosis (TK), C7-S1 sagittal vertical axis (C7-S1 SVA) and proximal junctional angle (PJA) were evaluated preoperatively, postoperatively and at the final follow-up.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!