As a prototype of a pi-conjugated molecule bundled system, a series of B,B',B''-trianthryl- N,N',N''-triarylborazine derivatives bearing various p-substituted phenyl groups (p-R-C(6)H(4): R = hexyl (1), i-Pr (2), CF(3) (3), Br (5)) as aryl groups was designed and synthesized. The crystal structure analysis of these derivatives confirmed that the three anthryl and three phenyl groups are bundled up alternately in a C(3) symmetrical gear-shaped fashion. On the basis of this structure, the trianthrylborazine derivatives form a unique honeycomblike packing structure consisting of intermolecular pi-stacking of the anthryl moieties. Significant bundle effects were observed in the photophysical and electrochemical properties of these compounds. In their fluorescence spectra, the trianthrylborazine derivatives (1-3) show intense emissions around 390 nm, whose quantum yields (1, Phi(F) = 0.62; 2, Phi(F) = 0.59; 3, Phi(F) = 0.63) are about twice high as that of anthracene (Phi(F) = 0.27). The cyclic voltammetry measurements show that the oxidation peak potential can be tuned by varying the substituents on the phenyl moieties. Theoretical calculations (B3LYP/ 6-31G(d)) suggested that secondary through-bond/through-space interactions in the bundled structure play an important role in the tuning of these properties. Facile structural derivatization at the 10-position of the anthryl moieties of trianthrylborazine was conducted to demonstrate the utility of the borazine skeleton as a core framework for new organic electronic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0537171DOI Listing

Publication Analysis

Top Keywords

pi-conjugated molecule
8
bundle effects
8
phenyl groups
8
trianthrylborazine derivatives
8
anthryl moieties
8
molecule bundles
4
bundles synthesis
4
synthesis series
4
series bb'b''-trianthryl-nn'n''-triarylborazines
4
bb'b''-trianthryl-nn'n''-triarylborazines bundle
4

Similar Publications

Synthesis and Optical Properties of -Arylnaphtho- and Anthra[2,3-]oxazol-2-amines.

Molecules

January 2025

School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.

Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be functional probes, but their synthetic methods are extremely limited. Herein, we describe electrochemical reactions of 3-amino-2-naphthol or 3-amino-2-anthracenol and isothiocyanates in DMSO, using a graphite electrode as an anode and a platinum electrode as a cathode in the presence of potassium iodide (KI), which afford -arylnaphtho- and -arylanthra[2,3-]oxazol-2-amines via cyclodesulfurization.

View Article and Find Full Text PDF

Selective Interface Engineering with Large π-Conjugated Molecules Enables Durable Zn Anodes.

Angew Chem Int Ed Engl

January 2025

USTC: University of Science and Technology of China, School of Chemistry and Materials Science, No.96, JinZhai Road, Baohe District, 230026, Hefei, CHINA.

Undesirable dendrite growth and side reactions at the electrical double layer (EDL) of Zn/electrolyte interface are critical challenges limiting the performance of aqueous zinc ion batteries. Through density functional theory calculations, we demonstrate that grafting large π-conjugated molecules (e.g.

View Article and Find Full Text PDF

The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.

View Article and Find Full Text PDF

Figure-eight macrocycles represent a fascinating class of π-conjugated units characterized by unique aesthetics and non-contact molecular crossing at the center. Despite progress in synthesis over the past century, research into inorganic, organic, and polymeric figure-eight materials remains in its infancy. Here we report the first examples of figure-eight covalent organic frameworks by condensing figure-eight knots to create extended porous figure-eight π architectures.

View Article and Find Full Text PDF

Heteroarene-Fused Benzo[b]arsoles: Structure, Photophysical Properties, and Effects of the Bridging Element.

Chem Asian J

January 2025

Kyoto Institute of Technology: Kyoto Kogei Sen'i Daigaku, Faculty of Molecular Chemistry and Engineering, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-0962, Kyoto, JAPAN.

Heteroarene-fused heteroles have attracted considerable attention owing to their unique electronic and photophysical properties. The bridging element plays a crucial role in determining the electronic characteristics of the resulting π-conjugated molecules. In this study, we synthesized a series of heteroarene-fused benzo[b]arsoles and investigated their structures and photophysical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!