A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Normal mode analysis of Pyrococcus furiosus rubredoxin via nuclear resonance vibrational spectroscopy (NRVS) and resonance raman spectroscopy. | LitMetric

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(S(cys))(4) site in reduced and oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). The oxidized form has also been investigated by resonance Raman spectroscopy. In the oxidized Rd NRVS, strong asymmetric Fe-S stretching modes are observed between 355 and 375 cm(-1); upon reduction these modes shift to 300-320 cm(-1). This is the first observation of Fe-S stretching modes in a reduced Rd. The peak in S-Fe-S bend mode intensity is at approximately 150 cm(-1) for the oxidized protein and only slightly lower in the reduced case. A third band occurs near 70 cm(-1) for both samples; this is assigned primarily as a collective motion of entire cysteine residues with respect to the central Fe. The (57)Fe partial vibrational density of states (PVDOS) were interpreted by normal mode analysis with optimization of Urey-Bradley force fields. The three main bands were qualitatively reproduced using a D(2)(d) Fe(SC)(4) model. A C(1) Fe(SCC)(4) model based on crystallographic coordinates was then used to simulate the splitting of the asymmetric stretching band into at least 3 components. Finally, a model employing complete cysteines and 2 additional neighboring atoms was used to reproduce the detailed structure of the PVDOS in the Fe-S stretch region. These results confirm the delocalization of the dynamic properties of the redox-active Fe site. Depending on the molecular model employed, the force constant K(Fe-S) for Fe-S stretching modes ranged from 1.24 to 1.32 mdyn/A. K(Fe-S) is clearly diminished in reduced Rd; values from approximately 0.89 to 1.00 mdyn/A were derived from different models. In contrast, in the final models the force constants for S-Fe-S bending motion, H(S-Fe-S), were 0.18 mdyn/A for oxidized Rd and 0.15 mdyn/A for reduced Rd. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja042960hDOI Listing

Publication Analysis

Top Keywords

fe-s stretching
12
stretching modes
12
normal mode
8
mode analysis
8
pyrococcus furiosus
8
nuclear resonance
8
resonance vibrational
8
vibrational spectroscopy
8
spectroscopy nrvs
8
resonance raman
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!