Amacrine neurons are among the most diverse cell classes in the vertebrate retina. To gain insight into mechanisms vital to the production and survival of amacrine cell types, we investigated a group of mutations in three zebrafish loci: kleks (kle), chiorny (chy), and bergmann (bgm). Mutants of all three genes display a severe loss of selected amacrine cell subpopulations. The numbers of GABA-expressing amacrine interneurons are sharply reduced in all three mutants, while cell loss in other amacrine cell subpopulations varies and some cells are not affected at all. To investigate how amacrine cell loss affects retinal function, we performed electroretinograms on mutant animals. While the kle mutation mostly influences the function of the inner nuclear layer, unexpectedly the chy mutant phenotype also involves a loss of photoreceptor cell activity. The precise ration and arrangement of amacrine cell subpopulations suggest that cell-cell interactions are involved in the differentiation of this cell class. To test whether defects of such interactions may be, at least in part, responsible for mutant phenotypes, we performed mosaic analysis and demonstrated that the loss of parvalbumin-positive amacrine cells in chy mutants is due to extrinsic (cell-nonautonomous) causes. The phenotype of another amacrine cell subpopulation, the GABA-positive cells, does not display a clear cell-nonautonomy in chy animals. These results indicate that environmental factors, possibly interactions among different subpopulations of amacrine neurons, are involved in the development of the amacrine cell class.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2005.06.009DOI Listing

Publication Analysis

Top Keywords

amacrine cell
32
cell subpopulations
16
amacrine
12
cell
12
selected amacrine
8
vertebrate retina
8
amacrine neurons
8
cell loss
8
cell class
8
subpopulations
5

Similar Publications

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Evolution of rod bipolar cells and rod vision.

J Physiol

January 2025

Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.

Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).

View Article and Find Full Text PDF

Importance: As an accessible part of the central nervous system, the retina provides a unique window to study pathophysiological mechanisms of brain disorders in humans. Imaging and electrophysiological studies have revealed retinal alterations across several neuropsychiatric and neurological disorders, but it remains largely unclear which specific cell types and biological mechanisms are involved.

Objective: To determine whether specific retinal cell types are affected by genomic risk for neuropsychiatric and neurological disorders and to explore the mechanisms through which genomic risk converges in these cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!