We quantify the maximum error due to multiple-scattering effects for an infrared scattering droplet izing technique. Errors in Sauter mean diameters (SMDs) and liquid volume fractions were estimated lased on experimentally determined polarization properties of the scattered light. Light that is multiply scattered from spherical particles becomes randomly polarized, whereas singly scattered light from a spherical particle contains no cross-polarization scattering component. Therefore measurement of the cross-polarization component (in this case parallel) of the scattering signal is a measure of the multiply scattered light. A ratio of parallel to perpendicular polarized scattered light was experimentally determined and used to calculate an error due to multiple scattering. The infrared scattering measurements and polarization measurements used to quantify the multiple-scattering errors were applied to a typical diesel spray that was injected into three different background conditions: a room ambient condition; a room-temperature, high-pressure condition; and a combusting condition. Droplet SMD, liquid volume fraction, and multiple-scattering errors were determined for a number of locations within the spray; results indicate that the combusting case is negligibly affected by multiple scattering. However, the room ambient case exhibited notable errors due to multiple scattering near the centerline of the spray, and the high-pressure case demonstrated susceptibility to multiple scattering throughout all regions investigated. It is important to note, however, that multiple-scattering errors in many cases translate into relatively small effects on the reported droplet sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.44.006049DOI Listing

Publication Analysis

Top Keywords

scattered light
16
multiple scattering
16
infrared scattering
12
multiple-scattering errors
12
scattering
9
multiple-scattering effects
8
effects infrared
8
scattering measurements
8
volume fraction
8
liquid volume
8

Similar Publications

Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.

View Article and Find Full Text PDF

Unidirectional chiral scattering from single enantiomeric plasmonic nanoparticles.

Nat Commun

January 2025

Department of Physics and London Centre for Nanotechnology, King's College London, London, WS2R 2LS, UK.

Controlling scattering and routing of chiral light at the nanoscale is important for optical information processing and imaging, quantum technologies as well as optical manipulation. Here, we introduce a concept of rotating chiral dipoles in order to achieve unidirectional chiral scattering. Implementing this concept by engineering multipole excitations in helicoidal plasmonic nanoparticles, we experimentally demonstrate enantio-sensitive and highly-directional forward scattering of circularly polarised light.

View Article and Find Full Text PDF

The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein.

View Article and Find Full Text PDF

Utilization of AF4 for characterizing complex nanomaterial drug products: Reexamining sample recovery and its impact on particle size distribution as a quality attribute.

J Chromatogr A

January 2025

Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA. Electronic address:

Asymmetrical flow field-flow fractionation (AF4) with multi-detection has continued to gain wider acceptance for characterizing complex drug products. An important quality attribute for these products is the measurement of the particle size distribution (PSD). Current limitations of established procedures (e.

View Article and Find Full Text PDF

Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube.

ACS Appl Bio Mater

January 2025

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea.

Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!