Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The efficacy of antiretroviral postexposure prophylaxis (PEP) against infection with human immunodeficiency virus (HIV) following occupational exposures has prompted the use of PEP after nonoccupational exposures. There are, however, important differences between occupational and nonoccupational exposures, and the effectiveness of PEP following nonoccupational exposure is unknown. We sought to describe the occurrence and circumstances of HIV seroconversion following nonoccupational PEP.
Methods: HIV uninfected individuals reporting potential sexual or injection drug use exposures to HIV in the preceding 72 h received a 28-day regimen of antiretroviral therapy and counseling in a nonrandomized trial. The level of HIV antibody was measured 12 weeks after PEP initiation.
Results: Of 877 exposed subjects, 702 were evaluable 12 weeks after exposure. Seroconversion was detected in 7 subjects (1%; 95% confidence interval, 0.4%-2%). Three seroconverters reported having no exposures after PEP initiation and, thus, probably represent evidence of chemoprophylactic failure. In the other 4 subjects, additional exposures to HIV after PEP initiation or detection of HIV RNA in plasma specimens obtained at baseline precluded determination of the source of seroconversion. No exposure source was available to assess genetic concordance with the seroconverter's virus.
Conclusions: As for occupational exposure, PEP is not completely effective in preventing HIV infection following nonoccupational exposure. Therefore, primary prevention remains essential. In contrast to the occupational setting, the potential source of exposure is rarely available for testing in the nonoccupational setting, and exposures are often not isolated. Thus, it is often impossible to determine whether seroconversion resulted from failure of PEP or from other exposures, posing difficulties for future comparative studies seeking to evaluate the effectiveness of PEP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/497268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!