Production of alkaline protease with Teredinobacter turnirae in controlled fed-batch fermentation.

Biotechnol Lett

Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubarak City for Scientific Research and Technology Applications, New Bourg El-Arab City, Research Area, 21934, Alexandria, Egypt.

Published: October 2005

By using our previously optimized media and a fed-batch operation controlled by LabVIEW Software, the key parameter for a high production of alkaline protease using the marine bacterium, Teredinobacter turnirae, was to maintain a low concentration of C and N-sources ( < 2 g sucrose l(-1) and < 0.2 g NH4C l l(-1)) using an appropriate fed-batch culture system. A maximum protease activity of 8250 U ml(-1 )was thus achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-005-1309-9DOI Listing

Publication Analysis

Top Keywords

production alkaline
8
alkaline protease
8
teredinobacter turnirae
8
protease teredinobacter
4
turnirae controlled
4
controlled fed-batch
4
fed-batch fermentation
4
fermentation optimized
4
optimized media
4
media fed-batch
4

Similar Publications

Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation procedure for removing fouling deposits. Traditional CIP includes a series of chemical cleaning cycles, including alkaline, acid, and sanitizer. However, these chemicals are hazardous to the environment and employees.

View Article and Find Full Text PDF

To enable highly efficient in situ hydrogen release from methanol/water reforming at lower temperature, the integration of solar-energy offers a promising approach to activate methanol/water and substantially lower the activation energy of this reaction. Herein, we present a novel dual-vacancy defective hollow heterostructure derived from Metal-Organic Frameworks, featuring abundant surface hydroxyl groups and S/O vacancies, for photothermal-promoted methanol solution reforming into hydrogen. The [In2S3-x/In2O3-x](OH)y exhibits exceptional photothermal H2 evolution activity, achieving a production rate of 215.

View Article and Find Full Text PDF

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

The heterogeneity of Pinus yunnanensis plantation growth was driven by soil microbial characteristics in different slope aspects.

BMC Plant Biol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China.

The slope aspect is an important environmental factor, which can indirectly change the acceptable solar radiation of forests. However, the mechanism of how this aspect changes the underground ecosystem and thus affects the growth of aboveground trees is not clear. In this study, Pinus yunnanensis plantation was taken as the research object, and the effects of soil and microbial characteristics on tree growth under different slope aspects and soil depths were systematically analyzed.

View Article and Find Full Text PDF

Anuric Acute Kidney Injury in Chronic Myeloid Leukemia: A Rare Complication Case.

Acta Med Indones

October 2024

Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

This report describes a rare case of anuric acute kidney injury related to suspected urate nephropathy in a 23-year-old male with chronic phase of Chronic Myeloid Leukemia (CML). The patient presented with anuria and limb edema, with a history of imatinib-treated CML. Investigations revealed probable urate crystals causing bilateral hydronephrosis and hydroureters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!