A tumorigenic subpopulation with stem cell properties in melanomas.

Cancer Res

Program of Molecular and Cellular Oncogenesis, The Wistar Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, PA 19104, USA.

Published: October 2005

Recent studies suggest that cancer can arise from a cancer stem cell (CSC), a tumor-initiating cell that has properties similar to those of stem cells. CSCs have been identified in several malignancies, including those of blood, brain, and breast. Here, we test whether stem cell-like populations exist in human melanomas. In approximately 20% of the metastatic melanomas cultured in growth medium suitable for human embryonic stem cells, we found a subpopulation of cells propagating as nonadherent spheres, whereas in standard medium, adherent monolayer cultures were established. Individual cells from melanoma spheres (melanoma spheroid cells) could differentiate under appropriate conditions into multiple cell lineages, such as melanocytic, adipocytic, osteocytic, and chondrocytic lineages, which recapitulates the plasticity of neural crest stem cells. Multipotent melanoma spheroid cells persisted after serial cloning in vitro and transplantation in vivo, indicating their ability to self-renew. Furthermore, they were more tumorigenic than adherent cells when grafted to mice. We identified similar multipotent spheroid cells in melanoma cell lines and found that the stem cell population was enriched in a CD20+ fraction of melanoma cells. Based on these findings, we propose that melanomas can contain a subpopulation of stem cells that contribute to heterogeneity and tumorigenesis. Targeting this population may lead to effective treatments for melanomas.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-1343DOI Listing

Publication Analysis

Top Keywords

stem cells
16
stem cell
12
spheroid cells
12
cells
11
stem
8
subpopulation stem
8
cell properties
8
cells melanoma
8
melanoma spheroid
8
cell
6

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Introduction: This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD).

Methods: Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!