MICALs comprise of a family of phylogenetically conserved, multidomain cytosolic flavoprotein monooxygenases. Drosophila (D-)MICAL binds the neuronal Sema1a receptor PlexA, and D-MICAL-PlexA interactions are required in vivo for Sema1a-induced axon repulsion. The biological functions of vertebrate MICAL proteins, however, remain unknown. Here, we describe three rodent MICAL genes and analyze their expression in the intact rat nervous system and in two models of spinal cord injury. MICAL-1, -2, and -3 expression patterns in the embryonic, postnatal, and adult nervous system support the idea that MICALs play roles in neural development and plasticity. In addition, MICAL expression is elevated in oligodendrocytes and in meningeal fibroblasts at sites of spinal cord injury but is unchanged in lesioned corticospinal tract neurons. Furthermore, we find that the selective monooxygenase inhibitor EGCG attenuates the repulsive effects of Sema3A and Sema3F in vitro, but not those of several other repulsive cues and substrates. These results implicate MICALs in neuronal regeneration and support the possibility of employing EGCG to attenuate Sema3-mediated axon repulsion in the injured spinal cord.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2005.09.001DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
flavoprotein monooxygenases
8
neural development
8
axon repulsion
8
nervous system
8
cord injury
8
mical
4
mical flavoprotein
4
expression
4
monooxygenases expression
4

Similar Publications

Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.

Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).

View Article and Find Full Text PDF

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare white matter disease characterized by axonal and glial injury. Although its clinical characteristics have been described in case reports, the prevalence of CSF1R mutations in clinically suspected ALSP cases remains unclear. Herein, we analysed the frequency of CSF1R mutations in patients with probable or possible ALSP and describe the genetic, clinical, radiological, and pathological findings of ALSP cases in individuals of Korean ancestry.

View Article and Find Full Text PDF

Spinal cord injury (SCI) poses a complex set of physiological, psychological, and cognitive challenges that significantly affect an individual's quality of life. Analysis of longitudinal studies reveals that cognitive changes following SCI are often underestimated yet significantly impact patient's ability to adapt to their new circumstances. However, the role of neuropsychology in SCI management and rehabilitation is yet to be elucidated.

View Article and Find Full Text PDF

Background: Resection of calcified meningiomas in the ventral thoracic spinal canal remains a formidable surgical challenge despite advances in technology and refined microsurgical techniques. These tumors, which account for a small percentage of spinal meningiomas, are characterized by their hardness, complicating safe resection and often resulting in worse outcomes than their noncalcified counterparts.

Observations: The authors present the case of a 68-year-old woman with a ventrally located ossified meningioma at the T9-10 level, successfully treated via a posterolateral transpedicular approach.

View Article and Find Full Text PDF

Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!